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Abstract—With wide applications to various practical prob-
lems, multi-objective evolutionary optimization has become a
popular research field in the past 20 years. However, the
performance of traditional Multi-Objective Evolutionary Algo-
rithms (MOEAs) often deteriorates rapidly as the number of
decision variables increases. The specific difficulties behind this
performance deterioration still remain unclear despite recent
efforts to design new algorithms. In this work, the exclusive
challenges along with the increase of the number of variables
of a Multi-objective Optimization Problem (MOP) are examined
empirically, and the popular benchmarks are categorized into
three groups accordingly. Problems in the first category only
require MOEAs to have stronger convergence. Problems that
require MOEAs to have stronger diversification but ignore a
correlation between position and distance functions are grouped
as the second. The rest of the problems that pose a great challenge
to the balance between diversification and convergence by consid-
ering a correlation between position and distance functions are
grouped as the third. While existing large-scale MOEAs perform
well on the problems in the first two categories, they suffer a
significant loss when applied to those in the third category. To
solve large-scale MOPs in this category, we have developed a
novel indicator-based evolutionary algorithm with an enhanced
diversification mechanism. The proposed algorithm incorporates
a new solution generator with an external archive, thus forcing
the search towards different sub-regions of the Pareto front using
a dual local search mechanism. The results obtained by applying
the proposed algorithm to a wide variety of problems with up to
8192 variables demonstrate that it outperforms eight state-of-the-
art approaches on the examined problems in the third category
and show its advantage in the balance between diversification
and convergence.

Index Terms—scalability, multi-objective optimization, large-
scale optimization, indicator-based evolutionary algorithm

I. INTRODUCTION

Scalability of Evolutionary Algorithms (EAs) has been a
long-standing concern in the Evolutionary Computation (EC)
community [1]. In the literature of multi-objective optimiza-
tion, scalability with respect to the number of objectives
has attracted considerable research interests [2]-[4]. However,
scalability with respect to the number of decision variables
remains inadequately explored. Given that the performance
of most existing Multi-Objective EAs (MOEAs) deteriorates
severely with the increase in the number of decision vari-
ables [5], [6], this deficiency has motivated the present study'.

When a large number of variables is involved in an
MOP, the decision space is of high dimensionality, akin to

! Although research on the scalability of many-objective EAs also required
further attention, this work focuses on two objectives to study the essential
features brought out by a large number of decision variables.

the large-scale single-objective optimization [7], [8]. Thus,
some efforts have been made to design new algorithms by
adapting existing techniques to large-scale single-objective
optimization to the MOEA context. For example, the widely-
used concept of cooperative coevolution [9] has led to
the proposal of CCGDE3 [10], MOEA/D? [11], MOEA/D-
RDG [12], MOEA/DVA [13], LMEA [14], DPCCMOEA [15]
and WOF [16]-[18]; the dimensionality reduction based
on random embedding [19] was used for the design of
ReMO [20]. Yet, these efforts have failed to ensure that the
aforementioned MOEAs scale well to a number of large-scale
Multi-objective Optimization Problems (MOPs), as shown in
Section II. This is not surprising, since the target of multi-
objective optimization, i.e., finding the Pareto optimal set, is
different from that of single-objective optimization. Thus, it
is unlikely that direct application of methods aiming at large-
scale single-objective problems would perform ideally in the
MOP domain. Still, the new challenges introduced by large-
scale MOPs have rarely been discussed in the literature.

The aim of this work is to bridge the gap in extant
knowledge by first performing a comprehensive analysis of
the exclusive challenges to MOEAs that tend to be more
severe when the number of decision variables increases, and
then proposing a new scalable MOEA for large-scale multi-
objective optimization.

Empirical studies were carried out for the analysis as math-
ematical knowledge of problems could be hardly available
in a real-world scenario. Three aspects were examined to
show how increasing the number of decision variables affects
the performance of existing MOEAs: efficiency (i.e., the
computational effort that a given algorithm requires to reach
the Pareto front), quality of the obtained solution sets, and the
search behavior of a given algorithm in the objective space.

The experimental findings based on applying MOEAs
to four commonly used benchmarks (including ZDT [21],
DTLZ [22], WFG [23] and CEC 2009 competition [24])
indicate that different problems may pose different challenges
to the algorithms when the number of variables increases.
Thereby, these problems can be categorized into three groups:
convergence-focused (ZDT, DTLZ and WFG), diversity-type
I (WFG with varying numbers of position variables) and
diversity-type II (CEC 2009 competition) problems. Specif-
ically, the convergence-focused problems require MOEAs
to exhibit sufficient convergence ability, as a set of well-
distributed solutions can be obtained relatively easily once
several good solutions have been found. On the other hand,



when the number of decision variables in the rest of the
problems increases, achieving a good spread along the Pareto
front becomes more difficult, while convergence is affected
relatively mildly for some existing MOEAs. Among these
problems, it is further found that such a diversity loss has
rarely been observed when NSGA-II is adopted, which mo-
tivates a further analysis of the design of these problems
and results in the two categories of diversity-type I and II
problems.

The difficulties associated with convergence-focused type
can be adequately mitigated by applying the techniques em-
ployed in large-scale single-objective EAs. The recently devel-
oped large-scale optimizer WOF [17] based on this strategy
is shown to be effective and efficient in solving problems in
this category. The diversity loss associated with diversity-type
I problems, as will be shown in Section II, is likely to be man-
ageable by adopting NSGA-II. Thus, the WOF, which employs
the same crowding distance as that of NSGA-II, could be a
good alternative in this scenario. However, the performance of
all evaluated algorithms when applied to the diversity-type 11
problems deteriorates significantly as the number of variables
increases. As recent large-scale optimizers, including WOF,
exhibit inferior performance to that of classical algorithms,
this highlights the need for a novel large-scale MOEA with
an enhanced diversification mechanism to deal with these
problems.

A novel scalable MOEA with Dual Local Search (DLS-
MOEA) is proposed. It is based on the SMS-EMOA frame-
work [25], enhanced by a new solution generator. SMS-
EMOA is an indicator-based algorithm with the aim of directly
maximizing the hypervolume. Intuitively, SMS-EMOA should
possess both high diversification and convergence, since the
hypervolume is an overall performance indicator [26]. How-
ever, its actual diversification ability is inadequate, as it lacks
in a mechanism by which the newly generated solution can
be biased towards different parts of the Pareto front. This
weakness becomes more prominent when solving large-scale
MOPs, as discussed in Section II. A similar behavior is also
observed when SMS-EMOA is used to solve many-objective
knapsack problems [27].

Given the aforementioned shortcomings, the main aim of the
proposed DLS-MOEA is to enhance the diversification ability
of SMS-EMOA by exploiting a new solution generator, while
inheriting the strength of SMS-EMOA with respect to conver-
gence. The motivation behind the new solution generator is
to encourage diversity by forcing the search towards different
parts of the Pareto front. More specifically, it maintains an
external archive during the search and, at a certain search
point, solutions stored in the archive are forced to explore
different parts of the non-dominated front constructed by the
current archive. It might be trivial to form such a search
bias when dealing with small-scale MOPs, since the search
space is relatively limited. When the number of variables
is large, however, the search guidance becomes much more
complicated, because the search space increases rapidly and
the mappings between the Pareto sets and Pareto front can

be quite complex. To address this issue, a dual local search
mechanism is implemented in the DLS-MOEA to guide the
search in the archive.

The effectiveness of the DLS-MOEA is examined through
comprehensive empirical experiments. Eight state-of-the-art
algorithms were applied to the diversity-type II problems,
involving 1024-8192 variables. The obtained results indicate
that the proposed DLS-MOEA significantly outperforms the
eight compared algorithms when applied to the examined
diversity-type II problems, and provides a good balance be-
tween diversification and convergence for large-scale MOPs.

The remainder of this paper is organized as follows. In
Section II, an analysis of challenges that might be more severe
for MOEAs when solving large-scale MOPs is presented.
Section IIT provides the details of the proposed DLS-MOEA.
Section IV is devoted to the experimental studies in which
DLS-MOEA performance is compared to that of eight state-
of-the-art algorithms. The key findings and suggestions for
future research directions are then provided in Section V, thus
concluding this paper.

II. CHALLENGES ASSOCIATED WITH LARGE-SCALE
MULTI-OBJECTIVE OPTIMIZATION

In this section, an empirical analysis is presented to identify
why existing MOEAs cannot scale well to large-scale MOPs.
Some theoretical analysis is also included to help deepen the
understanding of the experimental results.

A. Experimental Setup

The algorithms used in the experiments include: (1) three
MOEAs from the classes of Pareto-based, decomposition-
based and indicator-based MOEAs, i.e., NSGA-II [28],
MOEA/D [29], SMS-EMOA [25], and (2) two state-of-the-
art large-scale MOEAs that employ decomposition strategy
and dimensionality reduction, i.e., WOF-SMPSO [17] and
Re-NSGA-II [20]. The parameter settings of the algorithms
are shown in Table I, and the former three all use SBX
crossover with p. = 0.9,7, = 20 and polynomial mutation
with p,, = 1/D,n,, = 20, where D is the number of
decision variables. Four well-defined benchmark suites were
tested, namely ZDT [21], DTLZ [22], WFG [23] and CEC
2009 competition [24]. Specifically, on the one hand, ZDT4,
DTLZ1, DTLZ3, DTLZ6, WFG1-3, WFG5-6, WFG8-9, and
UF1-7 were examined, among which WFG problems were
tested with conventional parameters, i.e., D variables were
split into 2(M — 1) position and D — 2(M — 1) distance
variables, where M is the number of objectives [30]. Each
problem involved four instances with 1024, 2048, 4096 and
8192 variables. On the other hand, WFG1-9 with varying
numbers of position variables were also examined. Each
problem involved four instances with 200, 400, 600 and 800
position variables, in addition to 1000 distance variables. To
be different from the former setting, these WFG problems are
referred to as WFGpos problems.

To identify how the performance of the MOEAs changes
with the number of variables, these algorithms were examined



TABLE I
COMMON SETTINGS AND ALGORITHM PARAMETER SETTINGS FOR
WOF-SMPSO AND RE-NSGA-II

Common Settings
Population Size 40
1.0E+07 fitness evaluations or a solution set
with its hypervolume exceeding 90% of the
hypervolume of the Pareto front is obtained

Stopping Conditions

TABLE II
SOLUTION QUALITY IN TERMS OF RELATIVE HYPERVOLUME VALUES
(MEAN AND STANDARD DEVIATION) OF NSGA-II, MOEA/D,

SMS-EMOA, RE-NSGA-II AND WOF-SMPSO oN DTLZ1, WFGPOS3

AND UF1. THE BEST IS HIGHLIGHTED IN GREY. THE COMPARISONS
BETWEEN THE BEST AND OTHER ALGORITHMS ARE SHOWN IN ff, % AND §,

WHICH INDICATE IT PERFORMED SIGNIFICANTLY WORSE, BETTER AND
COMPARATIVELY THAN THE SPECIFIED ALGORITHM, RESPECTIVELY.

Independent Runs 25 [NSGA-IT_ MOEA/D_SMS-EMOA [Re-NSGA-II_ WOF-SMPSO
WOF-SMPSO DTLZI 1024| =0.741 _ +0.830 %0.876 0.000
Grouping Strategy Ordered Grouping 0.028 0.017 0.009 0.000
Problem Transformation p-Value Transformation DTLZI 2048 ] *0.000 +0.000 %0.002 %0.000
t1Evaluations 1000 0.000 0.000 0.006 0.000
2Bvaluations 500 DTLZI 4096 *0.000  *0.000 %0.000 %0.000
Weight Optlmlzfitlon 10 0.000 0.000 0.000 0.000
Populanqn Size DTLZ1 8192| %0.000 %0.000 %0.000 +0.000
Number of Groups 4 0.000 0.000 0.000 0.000
N“mgf)rlu‘gog:"se“ 3 *0.829 *0.828 *0.000 ¥0.567
0.042 0.034 0.000 0.007
Method to Choose Q Crowding Distance +0.807 +0.825 +0.000 +0535
p Vilue gg 0.036 0.017 0.000 0.030
_Delta - UF1 %0.757  %0.806 %0.000 %0.518
Polynomial Mutation 7,,, 20 0.091 0.037 0.000 0.045
Mutation Probability 1/D UF1 8192 %0.190  %0.630 %0.000 %0.510
Re-NSGA-II 0.159 0.062 0.000 0.041
Effective Dimension Bound 50 WEGpos3 1200 *0.750  *0.661 *0.711 %0.259
Crossover Percentage 0.7 0.008 0.009 0.008 0.060
Mutation Percentage 0.4 WFGpos3 1400 | %0.749  %0.597 %0.688 %0.246
Mutation Probability 0.02 0.006 0.005 0.007 0.059
"D is the number of decision variables WFGpos3 1600| %0.754  %0.560 %0.651 %0.216
0.010 0.006 0.009 0.006
WFGpos3 1800 | %0.755  %0.524 %0.624 %0.229
0.009 0.005 0.009 0.061

from three aspects: efficiency (i.e., the computational effort
that a given algorithm requires to reach the Pareto front),
quality of obtained solution sets, and the search behavior of
a given algorithm in the objective space. To be specific, the
speed metric used in [5], [6] was adopted. It is defined as the
number of fitness evaluations needed by algorithms to produce
a solution set of expected quality. The expected quality is
measured by the hypervolume [26], [31] of the Pareto front of
the given problem. In this work, it is set to 90% of the optimal
hypervolume as a trade-off between achieving an accurate
approximation and the limited computational budget, which
becomes particularly relevant in large-scale optimization. The
maximum number of fitness evaluations is set to 1.0E+07.
For the calculation of the hypervolume in performance com-
parisons, a slightly worse point than the nadir point is usually
used as a reference point in the evolutionary multi-objective
optimization community [31]. Thus, we first add 0.1 to each
dimension of the nadir point of the given problem. Then, the
population is normalized using the ideal point of the problem
and the modified nadir point. After the normalization, the
hypervolume is calculated using (1,1) as the reference point
for bi-objective minimization problems. The relative hyper-
volume values (i.e., the ratio of the obtained and the optimal
hypervolume value) is used to measure the quality of a given
solution set. To study the behavior of the algorithms, solution
sets obtained at different evolutionary stages were plotted in
the objective space and the corresponding evolutionary curves
of the relative hypervolume performance were analyzed.

B. Results and Discussions

The performance of the five evaluated algorithms is shown
in Table II. Three representative test problems are shown
as examples. As expected, the classical MOEAs could not
perform well on large-scale problems. They behaved worse
in terms of solution quality as well as efficiency than the
large-scale WOF-SMPSO on 19 out of 27 problems examined
in this experiment (as the examples DTLZ1 and WFG3pos
in Table II). For the rest of the problems (as the example
UF1 given in Table II), the evaluated large-scale MOEAs,
WOF-SMPSO in particular, unlike their high effectiveness
and efficiency on the former 19 problems, could not perform
well and were inferior to the classical MOEAs. The reasons
behind this inability to scale well in these cases will be further
investigated below.

For an in-depth analysis of the reasons behind the inade-
quate scalability of these classical MOEAs, the effect of the
number of variables on their search behavior was investigated.
The solution sets obtained are illustrated in Fig. 1. The
representative results of SMS-EMOA and NSGA-II are shown
as examples.

These results revealed two important phenomena. Firstly,
in 10 problems (of ZDT, DTLZ and WFG type), uniformly
distributed solutions over the entire Pareto front could be
easily obtained by all the algorithms, even for the cases with
4096 variables (as shown in Fig. 1). Although sometimes the
obtained solution set is far away from the Pareto front, e.g., the
case with 4096 variables shown in Fig. 1, it is found that it has
enough diversity as well. This is expected, as these problems



tend to require algorithms to have stronger convergence ability
only, as shown in many-objective optimization studies [32].
Besides, a closer look at the design of these problems shows
that these problems have a very few number of diversity-
related variables, e.g., 1 or 2, and no correlation between
position and distance functions is considered, which make it
relatively easy to find solutions with high diversity. These
problems are referred to as convergence-focused problems.
Note that the mathematical analysis based on the benchmark
functions is only used to help deepen our understanding of
the experimental results, rather than directly categorizing the
problems.

Secondly, uniformly distributed solutions over the Pareto
front could not be obtained for the remaining 17 problems (as
the examples UF1 and WFG3pos given in Fig. 1) for most
evaluated algorithms. Although the challenge in balancing the
convergence and diversity for these problems also exists when
the number of variables is small [24], [33], it is found that
this phenomenon is even more serious when the number of
decision variables increases. The obtained solution sets tended
to be more clustered in small parts of the Pareto front as the
number of decision variables increased even if the algorithms
could approach the Pareto front sometimes. Besides, when the
algorithms converged to some parts of the Pareto front, the
remaining parts they could find in the subsequent search pro-
cess were small. These problems (CEC 2009 competition and
WFGpos type) thus pose a great challenge to the diversification
ability for large-scale multi-objective optimization. A similar
diversity loss was also reported for large-scale multi-objective
distance minimization problems [34].

Furthermore, another interesting phenomenon was also ob-
served in the above experimental results. It is found that
although the loss of diversity can be observed on WFGpos
problems for some MOEAs when increasing the number of
diversity-related variables, such phenomenon is rarely ob-
served when NSGA-II is adopted (as the example WFG3pos
given in Fig. 1). Therefore, a deeper analysis of the design of
the examined problems was further carried out. It is found
that these problems are designed without considering the
correlation between position and distance functions [35], for
which the diversity and convergence can be pursued relatively
independently. Thus modifying position variables will always
result in non-dominated solutions. This might verify why the
diversity loss is rarely observed for NSGA-II to some extent,
thereby indicating that mechanisms of NSGA-II might be a
promising approach for such problems and could shed insight
on the categorization of problems, as well as on how the diver-
sification and convergence ability should be prioritized in the
choice of algorithms/parameters. In contrast, UF problems are
designed quite differently from WFG problems by introducing
the correlation between position and distance functions, which
has been shown to be an important feature in multi-objective
optimization [35]. Considering this difference, the WFGpos
problems and UF problem are categorized into two groups,
i.e., diversity-type I and II problems.

Consequently, the benchmark problems examined in this ex-
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Fig. 1. Solution sets of the runs with the median hypervolume metric values
obtained by different algorithms when applied to DTLZ1, WFGpos3 and UF1
with different number of variables

periment can be roughly categorized into three groups accord-
ing to the above analysis: convergence-focused (ZDT, DTLZ,
WEQG), diversity-type I (WFGpos), diversity-type II (CEC2009
competition) problems. It is noteworthy that this categorization
is derived by considering the behavior of three representative
MOEAs from different classes, which may justify well the
ability of this categorization to capture problem characteristics.
Our observation also clearly shows the difficulty of finding
an appropriate balance between the convergence and diversity
for large-scale MOPs, which has also been well discussed in
the recently proposed LSMOP test suite [36]. Note that these
problems may have different characteristics and thus different
criteria might result in different categorization. For example,
different population sizes might affect algorithm performance

[8], [37] and thereby lead to different categorization. In
this paper, we mainly consider the experimental observations
of existing MOEAs when the number of decision variables
increases, and the categorization is based on this indicator and
the experimental studies.

On the basis of the categorization shown above, the per-
formance of the large-scale MOEAs was further investigated.
It is found that WOF-SMPSO, which is adapted from the
decomposition techniques in large-scale single-objective EAs,
has shown a superior performance on 8 out of 10 convergence-
focused problems (as the example DTLZI1 given in Table II).
This is relatively intuitive since the challenges in achieving



good convergence when dealing with these problems can be
addressed to some extent by adopting the techniques applied
to large-scale single-objective EAs.

However, WOF-SMPSO behaved quite differently when
applied to problems with a diversity loss. Although it sig-
nificantly outperformed other algorithms on all diversity-type
I problems (as the example WFG3pos given in Table II), it
failed to solve most of the diversity-type II problems (as the
example UF1 given in Table II) and even exhibited inferior
performance compared to the three classical MOEAs. This
might be partly attributed to the relatively complex correlation
between position and distance functions in diversity-type II
problems, which complicates the identification of a good
weighting and would further affect the normal optimization
in WOF-SMPSO. On the other hand, it is interesting to
find that NSGA-II and WOF-SMPSO, both of which use
crowding distance as the selection criterion, do not exhibit
an obvious diversity loss when applied to most diversity-type
I problems (as the example WFG3pos given in Fig. 1). Thus,
combining crowding distance might be helpful when dealing
with diversity-type I problems and WOF-SMPSO could be a
good option in this scenario. By contrast, for diversity-type II
problems, there seems to be a lack of effective techniques in
current large-scale multi-objective optimization works, which
highlights the need for further attention to these problems.

III. THE PROPOSED DLS-MOEA

Based on the analysis presented in the previous section,
popular benchmark problems can be categorized into three
groups according to the challenges that tend to be more severe
posed by MOEAs when the number of decision variables
increases. Considering that convergence-focused and diversity-
type 1 problems can be solved well using techniques em-
ployed in the large-scale single-objective optimization context,
while existing algorithms degrade severely when dealing with
diversity-type II problems, the latter are the focus of this
investigation. In this section, a novel MOEA aiming at large-
scale MOPs, especially those in the category of diversity-type
II, denoted as DLS-MOEA, is presented. Its main objective
is to enhance the diversification ability of SMS-EMOA by
exploiting a new solution generator, while inheriting the
strength of SMS-EMOA in terms of good convergence. While
other MOEA frameworks could also be used, SMS-EMOA is
adopted as the basic framework in this work since it directly
maximizes the hypervolume, and thus could be beneficial
to the balance between diversification and convergence. The
general idea behind DLS-MOEA is to maintain an external
archive and force solutions in the archive to drive the search
towards different sub-regions of the Pareto front using a dual
local search mechanism.

A. Framework

DLS-MOEA is based on the SMS-EMOA framework and
is enhanced by a new solution generator with an external
archive. The process starts with a population of randomly
created solutions, and an external archive is initialized based

on the current population. At each generation, an offspring
is created using the new solution generator based on the
data from the archive. After merging the offspring with the
current population, the hypervolume-based selection is used
for the environmental selection of the merged population. The
archive is updated by the offspring based on a different rule
to encourage diversity. When the search terminates, the non-
dominated solutions in the final population are presented as
the output.

B. Generating new solutions based on an external archive

The external archive is used as the parent population to
generate a set of diverse solutions. Intuitively, the solutions
preserved in the archive should also maintain diversity. Thus,
the archive is initialized as the better half of the current
population, using non-dominated sorting as the first selection
criterion and then selecting solutions within the same front
at random. The aim of this initialization is to ensure that the
archive contains diverse solutions that represent the current
non-dominated front, while preserving some promising solu-
tions that would allow to discover other potentially good sub-
regions.

Given the current archive, our aim is to generate a set of
diverse solutions and then update the archive for the next
generation so that different sub-regions of the Pareto front
can be searched. Traditional methods often produce a new
solution by randomly selecting several parents from the current
population and allow the new solution to replace any solution
in the population or neighborhood population as long as the
fitness of the former is better. While this approach has been
shown to perform well when applied to relatively small-scale
problems [38], there might be some room for improvements
when applied to large-scale MOPs. The reason could be
that its actual diversification ability might be inadequate in
the large-scale multi-objective optimization since it has no
specific mechanism by which the new solutions can be biased
towards different parts of the Pareto front. Considering that
the performance of the subsequent population update could
be highly affected by the newly generated solutions, a new
solution generator with a strong diversification ability might
be a promising alternative. For this reason, a new solution
generator which adopts a different rule in generating and up-
dating new solutions based on the external archive is proposed.
More specifically, each member of the archive undergoes a
separate search process whereby it could be updated only by
a new solution produced using this member as the parent, in
case the replacement leads to an improvement in terms of
hypervolume indicator. This is done with the goal of forcing
each member of the archive to focus locally on one of the sub-
regions of the non-dominated front constructed by the current
archive. By adopting this approach, the comparatively weaker
sub-regions would still be searched, thus preventing limited
solution dispersion in the archive.

However, as the mapping between the objective and decision
spaces is always unknown in practice, it is not easy to produce
a new solution in certain areas in the objective space. Consid-



ering this, the local search in the decision space is adopted,
under the assumption that probing a relatively limited region
within the decision space of a given solution would be more
likely to generate a new solution that is within its local area of
the objective space. If the assumption is violated, it is possible
that the local search become less effective. To alleviate the
limitation, the local search is performed only on an external
archive. With this strategy, a new solution generated outside
its local area may still survive the environmental selection of
the population and can therefore benefit the search of other
parts of the Pareto front.

Furthermore, to make the local search for each member of
the archive more efficiently, the SEE [39], which exhibited a
superior performance in large-scale optimization, was adopted
here to implement the local search, some parameters of which
are modified to adapt to the multi-objective optimization.
Note that, in the search process of a specified member, this
member is only allowed to be updated by a new solution
produced using this member as the parent, and thus the other
members can be viewed as constants. Therefore, such process
can be viewed as a single-objective local search process on
the specified member assisted by a scalar metric named the
hypervolume. The main idea of SEE is to decompose a large-
scale problem into multiple low-dimensional sub-problems and
then optimize each sub-problem with the aid of a meta-model,
which aims to predict the local landscape of the decision space
by learning two likelihoods that the landscape goes ascending
on the smaller side and the landscape goes descending on the
larger side, respectively. These two likelihoods are respectively
denoted as pl and pr. After being initialized to 1.0, the
likelihoods are adjusted adaptively based on the well-known
1/5-rule [40], i.e., the value will be enlarged if the prediction
is correct, and be reduced otherwise. The obtained likelihoods
are then used for generating a new solution.

To be specific, assuming that the archive denoted as A con-
tains N solutions, i.e., A = {F1,Fs,--- ,Fn}, the specified
member is F'; and its corresponding decision vector is x with
D decision variables x1, -+ , zp, the offspring x’ is produced
with the aid of the two likelihoods adaptively learned by SEE,
as shown in (1):

rj+Az;, if Az; >0Apr; <r
zj+ Axy, if Azy <OApl; <r €))
xj, else.

€T. =

where r is a random number within [0,1] and Az, is ran-
domly generated by the polynomial mutation operator [41].
Then F is obtained from x’ and a new archive AL =
{F|,Fs,--- ,Fx} can be obtained accordingly. After that,
the hypervolume indicator is used to measure whether F can
replace F; by comparing HV (AV)) and HV (A), and thereby
the likelihoods of SEE are updated based on the comparison
result. It is noteworthy that other indicators can be used as
well provided that it can give the rank for F} and Fi, as SEE
only requires to know whether the prediction is correct. The
hypervolume is used here since it is an overall performance,
and thus is beneficial to the balance between the convergence

and diversification. Additionally, instead of using Gaussian and
Cauchy mutation operators as in [39], the polynomial mutation
is adopted since it has been widely used in the context of
multi-objective optimization [41] with effectiveness.

To summarize, given the external archive, the solution
generator enters a roll-polling local search phase, in which
a new solution based on SEE is created using each member
of the archive as the parent before updating the parent by the
new solution.

It is noteworthy that this roll-polling local search operation
on the external archive can also be viewed as a local search
in the objective space. Assuming that the archive denoted as
A contains N solutions, i.e., A = {F1,Fs,--- ,Fy}, the local
search starts from A, and then attempts to find a better archive
by incrementally changing a single element of A. If the change
produces a better archive, an incremental change is made to
the new archive. This process is repeated until all the elements
have been evaluated. It is noteworthy that each time a single
element of A is considered, all the other elements remain
unchanged. This process is shown in (2):

A — {F|,F,,--- Fy}
A={F,Fy,--- Fy}—
AN {F{,Fy,--- Fiy}.
2

In this process, hypervolume is used to measure the quality of
the archive, as shown in (3):

if HV(A) > HV(AY)

) A,
A‘{AW if HV(A) < HV(A®). )

As a consequence, a better archive A’ can be obtained. As
the local search can be viewed as being conducted in both the
objective and decision spaces, it is termed as dual local search.
The resultant DLS-MOEA based on the basic framework of
SMS-EMOA can thus be viewed as a memetic method.

C. Detailed Steps of DLS-MOEA

The details of DLS-MOEA are provided in Algorithm 1.
Although the new solution generator is capable of generating
diverse solutions, its convergence ability is relatively low in
comparison to those based on elite population. Hence, when
generating new solutions, DLS-MOEA alternates between the
new solution generator and the classical solution generator
used in SMS-EMOA. In the evolution, a particular solution
generator is applied for a fixed number of generations. The
algorithm starts by randomly initializing a population of
solutions. In every iteration of the main loop, the classical
solution generator is first used for generating new solutions
(Line 6-7). When executed maxGen times, an external
archive is initialized based on the current population, and
the parameters to be used in the new solution generator are
also initialized (Line 13—14). Next, the new solution generator
is used for generating new solutions based on the external
archive (Line 18-20). Each time a new solution is generated,
it is merged with the current population, and the hypervolume
indicator is used for the environmental selection of the merged



population. When the iterative optimization is finished, the
non-dominated solutions in the final population are returned
as the output.

Algorithm 1: DLS-MOEA

Input : The number of generations for each generator maxzGen, the number of
decision variables D, the population size N
Output: An approximation set P

1 Initialize the population P randomly;
2 while stopping criterion is not met do

3 Set the generation counter g = 0;

4 while g < mazGen do

5 for i =1: N do

6 Randomly select pq, p2 as the parents from P;

7 Generate g by applying crossover and mutation to pi, p2;

8 Update P with g using the hypervolume indicator;

9 end

10 Setg=g9g+1;

1 end

12 Set K = N/2;

13 Initialize the archive A = {Fy,--- , Fx} as the better half of P by using
the non-dominated sorting and selecting solutions within the same level at
random;

14 Initialize the two-dimensional probability vectors pl g p and prpe . p,
and each element is set to 1.0;

15 Set the generation counter g = 0;

16 while g < maxzGen do

17 for i =1: K do

18 Generate F from F; by using SEE with pl; and pr;;

19 Update A by A = {Fy,.-. ,F/,.--, Fg} based on (3)

using hypervolume indicator;

20 Adjust pl; and pr; using the 1/5-rule;

21 Update P with F)] using hypervolume indicator;

2 end

23 Setg=g9g+1;

24 end

25 end

26 return non-dominated solutions in P;

D. Computational Complexity Analysis

The large number of decision variables of large-scale MOPs
increases the computational complexity of MOEAs. As DLS-
MOEA is based on the basic framework of SMS-EMOA, in
order to analyze the time complexity of DLS-MOEA, it is
worthy to first analyze the additional computational cost in
each generation introduced by incorporating the new solution
generator. Note that there is always only one offspring gener-
ated each time the population is updated, regardless of whether
this new solution generator is included or not. Therefore, the
additional computational cost in each generation comes from
two parts: updating the archive with the offspring (which
has already been evaluated) (line 19 in Algorithm 1) and
adjusting the mutation probabilities by the 1/5-rule (line 20
in Algorithm 1). In the former, the updating is carried out by
comparing the offspring with its parent using the hypervolume
indicator. As the computational cost of fitness evaluations is
often very costly in real-world problems, especially in large-
scale problems, this updating time could often be acceptable.
Adjusting mutation probabilities contains only simple scalar
calculations, which could be omitted compared to the com-
putational cost of fitness evaluation. Given a large-scale MOP
with D decision variables and a population size of N, the
time complexity of the above two parts are O(N log(/N)) and
O(D), respectively. Therefore, the computational complexity

of the proposed approach is of the same order as that of SMS-
EMOA.

IV. EXPERIMENTAL STUDIES
A. Test Problems and Performance Metrics

The algorithms were evaluated on the diversity-type II
problems described in Section II. Each problem involves
four instances, with 1024, 2048, 4096 and 8192 variables,
respectively. The performance indicators used in the exper-
iments are the relative hypervolume values and the speed
metric, as defined in Section II. For all the results, the two-
sided Wilcoxon ranksum test [42] at a 0.05 significance level
was also conducted to see whether the performance of two
algorithms is statistically significantly different.

B. Compared Algorithms

The algorithms compared in this work are CCGDE3 [10],
MOEAD/DVA [13], LMEA [14], [43], WOF [17], ReMO [20],
NSGA-II [28], MOEA/D [29] and SMS-EMOA [25]. The
first five are recent large-scale optimizers that belong to
two different groups. To be specific, CCGDE3, MOEA/DVA,
LMEA and WOF are based on decomposition techniques for
which source code is available online, whereas ReMO employs
dimensionality reduction methodology and its source code
was obtained from the authors. The remaining algorithms are
representative MOEAs from the Pareto-based, decomposition-
based and indicator-based classes, which were implemented in
the jMetal framework for Java, version 4.5 [44].

The general and algorithm-specific parameter settings of the
large-scale optimizers are summarized in Table I and Table III,
respectively. They were configured with the settings suggested
by their authors. Specifically, for the WOF framework, WOF-
SMPSO was included since it exhibited the best performance
in the original study. For the same reasons, Re-NSGA-II was
included for the ReMO approach.

The proposed DLS-MOEA was configured in the same
way as SMS-EMOA, with the exception of implementing a
new solution generator, where the polynomial mutation was
adopted in SEE. The distribution index of the polynomial
mutation, which controls the spread of children solutions
around parent solutions, was set to 200.0, aiming to prioritize
local search. The number of generations for each solution
generator needs to be set for the DLS-MOEA to ensure
an appropriate balance between diversity and convergence.
Generally, its optimal value is problem-dependent and may
vary as the search progresses. To make a fair comparison, one
value was used for all the instances, rather than fine-tuning
it for each case. In the experiments, it was set to 2.0E+4,
as established in the preliminary experiment. All tested algo-
rithms except MOEA/DVA and LMEA were evaluated on each
problem instance. MOEA/DVA and LMEA were only tested
on problems with 1024 variables because the total number
of fitness evaluations used for the analysis before the actual
optimization had substantially exceeded the maximal fitness
evaluations allowed, i.e., 1.0E+7, for higher dimensionality.



TABLE III
ALGORITHM PARAMETER SETTINGS FOR CCGDE3, MOEA/DVA,
LMEA AND DLS-MOEA

CCGDE3
Species Number 2
Number of generation for each species 1
CR 0.5
F 0.5
MOEA/DVA
Number of Interaction Analysis 6
Number of Control Property Analysis 20
SBX Crossover 7. (for ZDT, DTLZ and WFG) 15
Crossover Probability 1.0
CR (for CEC 2009 competition) 1.0
F (for CEC 2009 competition) 0.5
Polynomial Mutation 7y, 15
Mutation Probability 1/D
LMEA
Number of Variable Clustering Analysis 2
Number of Perturbations 4
Number of Interaction Analysis 6
SBX Crossover 7. (for ZDT, DTLZ and WFG) 20
Crossover Probability 1.0
CR (for CEC 2009 competition) 1.0
F (for CEC 2009 competition) 0.5
Polynomial Mutation 7y, 20
Mutation Probability 1/D
DLS-MOEA
Number of Generations for Each Phase 2.0E+4
SBX Crossover 7. 20
Crossover Probability 0.9
Polynomial Mutation 7),,, 20
Mutation Probability 1/D’
Polynomial Mutation 7),,, in SEE 200

D is the number of decision variables

C. Experimental Results

The performance in terms of the speed and the rela-
tive hypervolume values of the peer algorithms—NSGA-
II, MOEA/D, SMS-EMOA, Re-NSGA-II, CCGDE, WOF-
SMPSO—on the diversity-type II problems are shown in
Tables IV-V. The results of MOEA/DVA and LMEA are
shown in Table VI. In these tables, the comparison results
between the relative hypervolume values yielded by DLS-
MOEA and compared algorithms according to the Wilcoxon
rank sum test are also presented.

The efficacy of DLS-MOEA can be evaluated from the best
performance it has achieved on the examined diversity-type
II problems. To be specific, DLS-MOEA not only scaled best
on 10 out of 28 instances of the diversity-type II as shown in
Table IV, but also obtained the best solutions on 22 instances
in terms of the relative hypervolume values according to the
summary of the Wilcoxon rank sum test results shown in
Table V, which is significantly better than all tested algorithms.

The difficulty of identifying an optimal balance between
convergence and diversity is a long-standing issue in the
MOEA design, as well as in large-scale multi-objective op-
timization [34], [45]. Thus, these results indicate that DLS-
MOEA not only achieved the best performance on the ex-
amined diversity-type II problems, but also exhibited a good
balance between diversity and convergence.

To further visualize the experimental results, in Fig. 2, the
obtained solution sets in the objective space for the UF1, UF2,

UF3 and UF7 problems with 1024 variables are plotted. It
can be seen that the solution sets yielded by DLS-MOEA
can disperse along the Pareto fronts more widely and evenly
than those provided by the other six algorithms. These results
suggest that DLS-MOEA can achieve the approximations with
both promising diversity and outstanding convergence for
these test instances.

The above results also demonstrate the contributions of the
new solution generator in DLS-MOEA. We would like to
highlight the good performance of the proposed DLS-MOEA
in comparison to SMS-EMOA, as the only difference stems
from incorporating the new solution generator in the former.
Indeed, it performed significantly better than SMS-EMOA on
20 out of 28 instances of the diversity-type II, as shown in
Table V. The solution sets yielded by DLS-MOEA and SMS-
EMOA shown in Fig. 2 further confirm that the new solution
generator is capable of improving the diversification ability.
These results indicate that DLS-MOEA not only enhances the
diversification ability of SMS-EMOA by exploiting the new
solution generator, but also inherits its strength in convergence.

It can be observed from the results that CCGDE3 and Re-
NSGA-II have the worst performance on all diversity-type
IT problems (the only exceptions are NSGA-II and WOF-
SMPSO, which performed worse on UF1 with 8192 variables).
This outcome could be attributed to the coevolution methods
used in CCGDE3 and the random embedding methods used
in Re-NSGA-II, which are not suitable for the test instances
since these methods aim to reduce the dimensionality of the
original problems and are thus more likely to miss the optima.

Although WOF-SMPSO is also a decomposition-based ap-
proach, it mitigates this issue to some extent by extending the
concept of weighting the variables to multiple objectives and
optimizing the weight vectors. Indeed, it achieves a superior
performance on problems that only require an algorithm to
have strong convergence and diversity-type I problems where
no correlation exists between position and distance functions.
In addition to the advantages inherited from large-scale single-
objective techniques, the good performance of WOF-SMPSO
could be partly attributed to the crowding distance scheme, as
diversity loss was rarely observed in Section II for NSGA-II
(which also adopts crowding distance scheme) when applied
to diversity-type I problems. However, it may potentially be
trapped in a poor performance when the Pareto optimal sets
of a given problem are very complex. The dramatic changes
in the performance thus render the WOF-SMPSO unsuitable
for solving such problems. On the other hand, by forcing
the search towards different sub-regions of the Pareto front,
DLS-MOEA is more diversity-oriented. It can also achieve an
outstanding convergence, as it adopts a hypervolume indicator-
based environmental selection. Thus, DLS-MOEA has an
advantage in dealing with large-scale MOPs.

MOEA/DVA and LMEA are large-scale optimizers which
aim to identify optimal variable groupings by dividing them
into diversity-related and convergence-related variables. The
results presented in Table VI indicate that MOEA/DVA can
obtain better results on UF4, UF5 and UF6, thus showing



TABLE IV
PERFORMANCE COMPARISONS IN TERMS OF THE SPEED (EFFICIENCY) OF THE ALGORITHMS (MEAN AND STANDARD DEVIATION) WHEN APPLIED TO THE
DIVERSITY-TYPE II PROBLEMS WITH DIFFERENT NUMBERS OF DECISION VARIABLES. A DASH ’'—’ INDICATES THAT THE ALGORITHM CANNOT ACHIEVE
THE REQUIRED APPROXIMATION FRONT IN 25 RUNS AFTER USING UP THE MAXIMAL FITNESS EVALUATIONS. THE BEST PERFORMANCE VALUES BASED
ON THE MEAN AND STANDARD DEVIATION ARE HIGHLIGHTED IN GREY. AN INSTANCE IS SHOWN IN THE TABLE IF THERE EXISTS AT LEAST ONE
ALGORITHM THAT CAN ACHIEVE THE REQUIRED APPROXIMATION BEFORE USING UP THE MAXIMAL FITNESS EVALUATIONS. THE PAIR-WISE
COMPARISONS BETWEEN DLS-MOEA AND OTHER ALGORITHMS ARE SHOWN IN f, % AND §, WHICH INDICATE DLS-MOEA PERFORMED
SIGNIFICANTLY WORSE, BETTER AND COMPARATIVELY THAN THE SPECIFIED ALGORITHM, RESPECTIVELY.

DLS-MOEA

1.79E+06 4.48E+04

2.78E+06 1.71E+05

5.80E+06 4.36E+05

Problem D NSGA-II MOEA/D SMS-EMOA Re-NSGA-II CCGDE3 WOF-SMPSO
UF1 1024 x9.61E+06 1.78E+05 - - - -
UF1l 2048 — — — — —
UF2 1024 *4.17E+06 1.80E+06 *3.86E+06 9.64E+05 *2.93E+06 2.27E+06 — —
UF2 2048 — *7.74E+06 1.95E+06 *4.69E+06 1.83E+06 — —
UF2 4096 — — *6.40E+06 1.52E+06 — —
UF2 8192 — — — — —
UF3 1024 — — *5.18E+06 1.46E+05 — —
UF3 2048 - — *9.68E+06 1.65E+05 — —
UF3 4096 - — — — —
UF3 8192 — — - — —
UF7 1024 *4.55E+06 1.13E+06 - +5.82E+06 1.01E+06 — -~
UF7 2048 *8.85E+06 1.21E+06 — — — —
UF7 4096 — — — — —
UF7 8192 — — — — —

TABLE V
PERFORMANCE COMPARISONS IN TERMS OF RELATIVE HYPERVOLUME VALUES (MEAN AND STANDARD DEVIATION) WHEN THE ALGORITHMS ARE
APPLIED TO THE DIVERSITY-TYPE II PROBLEMS WITH 1024 VARIABLES. THE BEST PERFORMANCE BASED ON THE MEAN AND STANDARD DEVIATION IS
HIGHLIGHTED IN GREY. THE PAIR-WISE WILCOXON RANK SUM TEST OF DLS-MOEA AGAINST THE COMPARED ALGORITHM IS SUMMARIZED IN TERMS
OF THE WIN-TIE-LOSS COUNTS. THE PAIR-WISE COMPARISONS BETWEEN DLS-MOEA AND OTHER ALGORITHMS ARE SHOWN IN f, * AND §, WHICH
INDICATE DLS-MOEA PERFORMED SIGNIFICANTLY WORSE, BETTER AND COMPARATIVELY THAN THE SPECIFIED ALGORITHM, RESPECTIVELY.

D Problem NSGA-TI MOEA/D SMS-EMOA Re-NSGA-IT WOF-SMPSO CCGDE3 DLS-MOEA
1024 UFT___ %0876 0019 0829 0042 0828 0.034 0000 0000 «0567 0.007 0447 0.110

1024 UF2 0912 0013 0921 0012 0930 0017 0761 0008 +0875 0002 +0.634 0.016

1024 UF3  +0881 0003 0849 0004 0930 0004 =0376 0002 0956 0001 0574 0007

1024 UF4 __ +0.683 0010 0.764 0.006 x0543 0006 §0.825 0.015 _+0.613 0029 0.825  0.006
1024 UF5 §0.527 0075 «0472 0075 80518 0.068 *0.000 0.000 #0.002 0010 _ +0.000 _ 0.000 |NOS38NNNO0050M
1024 UF6 50639 0.118 0549 0.141 +0.000 0000 *0.125 0120 »0.000 0000  0.652  0.083
1024 UF7___ «0897 0066 0642 0.165 0809 0.153 »0.000 0000 0552 0047 +0.137 0014 |NOOSINSONSAN
2048 UFT___ #0851 0011 0807 0036 0825 0.017 «0.000 _0.000 _x0.535 0.030 _ %0.395 _ 0.131

2048 UF2  «0878 0005 +0898 0006 0918 0024 0759 0.006 0875 0002 0284 0.024

2048 UF3 0793 0003 0750 _0.006 0903 0.002 0373 0002 *0.963 0.001 _*0.511 _ 0.008

2048 UF4 0653 0008 0712 0.005  +0.808 +0.541__ 0.006 0.826 _ 0.005
2048 UF5  §0436  0.73 0311 _ 0.082 0000 0.000 0000 0.000 0477 0.139
2048 UF6  §0.653  0.061 0590 0.I18 +0.000  0.000 x0.063 _0.105 _0.000 _0.000 0.629  0.069
2048 UF7 0874 0088 0609 0.166 0845 0.106 *0.000 _ 0.000 10936 0.088
4096 UFT 0757 0091 0806 0.037 «0.807 0.029  «0.000 _ 0.000

4096 UF2 #0869 0006 0875 0.006 0903 0.020 *0.761 _ 0.007

4096 UF3 0774 0002 0685 0003  +0.801 _0.004 +0371 _ 0.001 0950 0.004
4096 UF4 0599 0011 0641 0.007 *0.756 0005 +0543  0.005 0808 0.004
4096 UF5  |S0B46RNN0P000 +0.135 0207 §0331 0210 *0.000 0000 *0.000  0.000 _+0.000 _0.000 0226 0.192
4096 UF6 0648 0045 0590 0.124  §0.666  0.061 _ *0.000 _ 0.000

4096 UF7 0738 0.169 0677 0.77 0868 0.028 x0.000 _ 0.000

8192 UFI __ »0.190 0.5 +0.630 0.062 *0815 0012 *0.000 _0.000

8192 UF2 _ «0817 0006 0850 0.002 +0.888 0015 *0.762  0.007

8192  UF3  x0.724 0004 +0.638 0002 +0.708 0.003 _ *0370 _ 0.000 *0434_ 0.005_ 0857 0013
8192 UF4 0561 0002 +0564 0011  +0.659 0.006 *0541 0.004 *0524 _ 0.001 _ 0.73% _ 0.006
8192 UF5 §00I8  0.114  §0.064 0.102 0000 0000  +0.000 0.000 +0.000 0.000 _0.021 _0.030
8192 UF6 0658 0058 +0614 0.109 0663 0.079 *0.000 0.000 _%0.034 0092 0.000 _ 0.000

8192 UF7 0280 0354 +0.624 0160 0864 0.027 *0.000 0.000 %0416 0065 0.000 _0.000

win/tie/loss 22/6/0 277170 207771 28/0/0 27175 28/0/0

the benefit of variable analysis. However, variable analysis
also makes it difficult for MOEA/DVA and LMEA to scale
up to MOPs with a larger number of decision variables.
To be specific, O(D?) fitness evaluations, where D is the
number of decision variables, are needed for the variable
grouping analysis. Thus, this result indicates that, although
the variable analysis could be very useful in the optimization
process, MOEA/DVA and LMEA might not be good choices

for addressing large-scale MOPs. It should be noted that, if
off-line analysis could be done in advance or most variables
of a given problem are known to be mostly diversity-related,
these two algorithms might be good options. Furthermore,
LMEA, which also considers the difficulties in dealing with
many objectives, could be a good alternative in large-scale
many-objective optimization.



TABLE VI
PERFORMANCE COMPARISONS BETWEEN DLS-EMOA, MOEA/DVA AND LMEA ON THE DIVERSITY-TYPE Il PROBLEMS WITH 1024 VARIABLES. A

DASH *-’

INDICATES THAT THE ALGORITHM CANNOT ACHIEVE THE REQUIRED APPROXIMATION FRONT IN 25 RUNS AFTER USING UP THE MAXIMUM

FITNESS EVALUATIONS. FOR THE INSTANCES WITH AN ’+’, THE RELATIVE HYPERVOLUME VALUES ARE REPORTED. FOR THE OTHER INSTANCES, THE
SPEED VALUES MEASURED BY THE CONSUMED FITNESS EVALUATIONS ARE REPORTED. THE BETTER PERFORMANCE BASED ON THE MEAN AND
STANDARD DEVIATION IS HIGHLIGHTED IN GREY. THE PAIR-WISE COMPARISON BETWEEN DLS-MOEA AND OTHER ALGORITHMS ARE SHOWN IN f,
AND §, WHICH INDICATES DLS-MOEA PERFORMED SIGNIFICANTLY WORSE, BETTER AND COMPARATIVELY THAN THE SPECIFIED ALGORITHM,
RESPECTIVELY.

UF1 UF2 UF3

UF4 +UF5 UF6 UF7

MOEA/DVA %9.45E+06 0.00E+00 *9.45E+06 0.00E+00 %9.45E+06 0.00E+00 *9.86E+06 8.18E+0

LMEA *9.98E+06 2.53E+04

+6.00E-06 2.00E-05

DLS-MOEA

- 5.38E-01 5.03E-02 -

V. CONCLUSION

In this work, an experimental analysis was carried out
to investigate the difficulties along with solving large-scale
MOPs with an increasing number of decision variables. The
results reported here suggest that popular benchmark problems
examined in this work can be categorized into three groups,
i.e., convergence-focused, diversity-type I and diversity-type II
problems. When applied to the convergence-focused problems,
algorithms are required to have strong convergence ability,
while strong diversification ability is less necessary. Available
evidence indicates that these problems can be solved well
by using techniques typically applied to large-scale single-
objective optimization. When applied to the diversity-type I
problems, algorithms are required to have relatively strong
diversification ability. Experimental results suggest that com-
bining crowding distance scheme might be helpful when deal-
ing with these problems and WOF-SMPSO could be a good
option in this scenario. On the other hand, when dealing with
diversity-type II problems with a correlation between position
and distance functions, the diversification ability of algorithms
becomes a significant challenge, without a marked impact on
the convergence. Thus, specific diversification mechanisms are
clearly needed for these problems.

Inspired by this observation, a novel MOEA, namely DLS-
MOEA, was proposed. It employs a new solution generator
with an external archive to force the search towards different
sub-regions of the Pareto front. Comprehensive experimental
studies were conducted, as a part of which DLS-MOEA was
applied to problems with up to 8192 decision variables. Its
performance was compared to that of eight state-of-the-art
algorithms, confirming its competitiveness in providing a good
balance between convergence and diversification as well as
its superiority when applied to the examined diversity-type II
problems.

In the future, several directions are worthy of further stud-
ies: (1) investigating more representative problems to better
understand difficulties induced in large-scale multi-objective
optimization; (2) constructing more representative benchmark
problems to better reflect the characteristics of real-world
large-scale problems; (3) developing adaptive problem analysis
mechanisms for algorithm selection in large-scale MOEA
context; (4) analyzing the impact of population size on large-
scale multi-objective evolutionary optimization; (5) applying

our algorithm to more large-scale MOPs to better understand
its effectiveness; (6) generalizing our idea to other algorithmic
frameworks such as MOEA/D and WOF.
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Fig. 2. Solution sets of the runs with the median hypervolume metric values yielded by Re-NSGA-II, CCGDE3, WOF-SMPSO, MOEA/D, NSGA-II,
SMS-EMOA and DLS-MOEA when applied to UF1, UF2, UF3 and UF7 with 1024 variables.



