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Abstract—In this paper, the optimal control problem for the
continuous-time nonlinear systems with partially unknown dy-
namics is investigated. The event-triggered internal reinforcement
learning (IRL) is proposed to approach the solution of the
Hamilton-Jacobi-Bellman (HJB) equation. Note that the knowl-
edge of internal dynamics is relaxed, and the event-triggered
control scheme is adopted to reduce the computational burden
and communication resources. For the online implementation
purpose, a single-critic neural network (NN) structure is con-
structed to approach the optimal value function and the optimal
policy with convergence analysis. Finally, a simulation example
is provided to demonstrate the effectiveness of the proposed
algorithm.

Index Terms—Internal reinforcement learning, event-triggered,
neural network, online learning

I. INTRODUCTION

As an important branch of machine learning, reinforcement
learning (RL) [1] has received spreading attention in various
fields such as economics [2], optimal control [3], and so on.
In general, we can divide RL in the optimal control filed
into two categories: model-based RL and model-free RL. For
the model-based RL, the knowledge of system dynamics is
required to design the optimal controller. For the model-free
RL, the system data is required and utilized to obtain the
optimal policy rather than the knowledge of system dynamics.
It should be mentioned that integral RL (IRL) proposed in
[4] is a main technique to relax the knowledge of the internal
dynamics for continuous-time (CT) nonlinear systems, which
means that only partially knowledge of system dynamics is
required.

IRL technique has been widely used to solve the optimal
tracking problem, zero-sum game [5], nonzero-sum game [6],
and so on. Recently, combining the off-policy scheme and IRL
technique, an offline iterative learning algorithm is proposed
for partially unknown ZS game [7]. Furthermore, a data-driven
RL method without the knowledge of system dynamics is
proposed based on IRL for uncertain system [8], H∞ [9], fully
cooperative games [10], and so on. The NN identifier with an
approximation error [11], which is usually time-consuming,
is not required in the data-driven RL approach based on off-
policy scheme and IRL technique. Note that only the collected
system data is required instead of the knowledge of system

dynamics, which means that the data-driven RL is a model-
free RL method.

Event-triggered control (ETC) scheme, which has been
widely investigated in the communication resources-limited
wireless sensor network, can save communication resources
and reduce computational burdens effectively. Recently, the
event-triggered scheme has been integrated with the RL to
design an event-triggered optimal controller for the nonlinear
system [12]. Sahoo et al. proposed an event-triggered NN con-
troller for the unknown nonlinear CT system [13]. Zhang et al.
proposed an event-triggered adaptive dynamic programming
(ADP) method for zero-sum games [14] and uncertain nonlin-
ear systems [15], respectively. The event-triggered RL method
was applied to the load frequency control of power systems in
[16]. In [17], the event-triggered ADP approach was developed
for the nonlinear systems without requiring exact knowledge
of internal system dynamics. Then, the event-triggered optimal
control for partially unknown nonlinear systems, where the
control input was constrained, was proposed in [18]. It should
be mentioned that the NN-identifier is required to identify the
unknown internal dynamics in [17, 18].

To the best of our knowledge, there is still no event-triggered
IRL algorithms for the optimal control of CT nonlinear
systems with partially unknown dynamics. It motivates our
research. In this paper, a novel event-triggered IRL algorithm
is proposed to design the optimal controller by approximating
the solution of the HJB equation. Note that the identification
process in [17, 18] is not required any more. The event-
triggered tuning law is given with the single critic NN struc-
ture. Then, a triggering condition is designed to guarantee
the UUB of the critic weights. Simulation results prove the
effectiveness of the proposed scheme.

II. PRELIMINARY

A. Problem Statement

Consider the continuous-time nonlinear system given by

ẋ(t) = f(x) + g(x)u(t), (1)

with the system state x(t) ∈ Rn, the nonlinear functions
f(x) ∈ Rn, g(x) ∈ Rn×m, and the control input u(t) ∈ Rm.
Let f(0) = 0, f(x) + g(x)u is Lipschitz continuous on a set
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Ω ∈ Rn that contains the origin. Assume that the system is
stabilizable on Ω.

Define an infinite-horizon integral cost function with control
policy u(t) as

V (x0) =

∫ ∞

0

(
xTQx+ uTRu

)
dτ

∆
=

∫ ∞

t

U(x(τ), u(τ))dτ

(2)

where the utility U(x, u) = xTQx+uT (t)Ru(t). Here, Q and
R are positive definite symmetric matrices with R = rrT . r
is an appropriate lower triangular matrix.

The value function with any admissible feedback control
policy u(x) ∈ Ψ(Ω) is

V (x(t)) =

∫ ∞

t

U
(
x(τ), u(x(τ))

)
dτ (3)

If the value function (3) is continuously differentiable, the CT
Bellman equation is

U
(
x, u(x)

)
+
(
∇V (x)

)T (
f(x) + g(x)u(x)

)
= 0, V (0) = 0

(4)
where ∇V (x) = ∂V (x)/∂x.

It is desired to find an optimal control policy such that the
value function is minimized. Define the Hamiltonian function
as

H(x, u,∇V ) = U
(
x(t), u(x)

)
+
(
∇V (x)

)T (
f(x)+g(x)u(x)

)
(5)

The optimal value function V ∗(x) satisfies the HJB equation

0 = min
u∈Ψ(Ω)

H(x, u,∇V ∗) (6)

Accordingly, the optimal control policy is

u∗(x) = −1

2
R−1gT (x)∇V ∗(x) (7)

With the control policy (7), the HJB equation can be
rewritten as

0 =xTQx+
(
∇V (x)

)T
f(x)

− 1

4

(
∇V (x)

)T
g(x)R−1gT (x)∇V (x)

(8)

Note that solving the HJB equation is difficult due to its
inherent nonlinear property. The policy iteration (PI) algorithm
is usually used to solve the HJB equation iteratively.

Explicitly the complete knowledge of the system dynamics
f(x) and g(x) is required. According to [4], given an ad-
missible policy and an integration time interval T , the IRL
algorithm is presented without the knowledge of the internal
dynamics f(x). During the policy evaluation, the internal
dynamics f(x) is relaxed by the integral operation for (9)
on the time interval [t, t + T ] and only the dynamics g(x) is
required for IRL.

Remark 1: The convergence of the IRL algorithm is proven
in [4]. In fact, solving for V i(x) in (11) is equivalent to finding
the solution of (9). Based on the convergence results of PI
algorithm, the IRL algorithm also converges to the solution of

Algorithm 1 (Policy Iteration)
1: Select an initial admissible policy u0(x) ∈ Ψ(Ω).
2: Policy Evaluation. Solve for V k(x) using

0 = U
(
x, uk(x)

)
+
(
∇V k(x)

)T (
f(x) + g(x)uk(x)

)
(9)

with V k(0) = 0.
3: Policy Improvement. Update the control policy

uk+1(x) = −1

2
R−1gT (x)∇V k(x) (10)

Algorithm 2 (Integral Reinforcement Learning)
1: Select an initial admissible policy u0(x) ∈ Ψ(Ω).
2: Policy Evaluation. Solve for V k(x) using

V k
(
x(t)

)
=

∫ t+T

t

U
(
x, uk(x)

)
dτ + V k

(
x(t+ T )

)
(11)

with V k(0) = 0.
3: Policy Improvement. Update the control policy

uk+1(x) = −1

2
R−1gT (x)∇V k(x)

the HJB equation on trajectories originating in Ω [6]. Note that
an initial admissible policy is required for both PI and IRL
algorithms, which is usually chosen based on experimental
experience.

III. EVENT-TRIGGERED IRL

To propose the ETC mechanism, we first define a mono-
tonically increasing sequence of triggering instants {τj}∞j=0,
where τj is the jth consecutive sampling instant with τj <
τj+1, j ∈ N with N = {0, 1, 2, · · ·}. Then a sampled-data
system characterized by the triggering instants is introduced,
where the controller is updated based on the sampled state
x̂j = x(τj) for all t ∈ [τj , τj+1). Define the event-based error
as

ej(t) = x̂j − x(t), ∀t ∈ [τj , τj+1), j ∈ N, (12)

where x(t) and x̂j denote the current state and the sampled
state, respectively.

In the event-based control method, the triggering instants
are determined by a triggering condition. Generally, the
triggering condition is determined by the event-based error
and a designed state-dependent threshold. When the event-
based error exceeds the state-dependent threshold, an event is
triggered. Then, the system states are sampled, which resets
the event-based error ej(t) to zero. Accordingly, the designed
event-based controller u(x̂j)

∆
= µ(x̂j) is updated. Note that

the system states are held until the next triggering instant.
Clearly, the control signal µ(x̂j) is a function of the event-
based state vector, which is executed based on the latest
sampled state x̂j instead of the current value x(t). That is,



the event-based controller is only updated at the triggering
instant sequence {τj}∞j=0, and remains unchanged in each
time interval t ∈ [τj , τj+1). Hence, this control signal µ(x̂j)
with j ∈ N is a piecewise constant function on each segment
[τj , τj+1).

With the event-based control input µ(x̂j), the sampled-data
version of the system (1) can be rewritten as

ẋ(t) = f(x) + g(x)µ (x(t) + ej(t)) (13)

Considering the event-based sampling rule, the optimal control
policy (7) becomes

µ∗(x̂j) = −1

2
R−1gT (x̂j)∇V ∗(x̂j) (14)

for all t ∈ [τj , τj+1), where ∇V ∗(x̂j) = ∂V ∗(x)/∂x|x=x̂j .
Using the event-triggered control policy (14), the Hamilto-

nian function becomes

H(x, µ∗(x̂j),∇V ∗)

=xTQx+
(
µ∗(x̂j)

)T
Rµ∗(x̂j) +

(
∇V ∗(x)

)T (
f + gµ∗(x̂j)

)
=
(
µ∗(x̂j)

)T
Rµ∗(x̂j)− 2

(
u∗(x)

)T
Rµ∗(x̂j) +

(
u∗(x)

)T
Ru∗(x)

=∥rT
(
u∗(x)− µ∗(x̂j)

)
∥2

(15)

The integral form of equation (15) along the time interval
[t, t+ T ] can be described as∫ t+T

t

U
(
x(τ), µ∗(x̂j)

)
dτ + V ∗(x(t+ T )

)
− V ∗(x(t))

=

∫ t+T

t

∥rT
(
u∗(x)− µ∗(x̂j)

)
∥2dτ

(16)

For the convenience of analysis, the following assumption
is introduced.

Assumption 1: The optimal controller u∗(x) is Lipschitz
continuous with respect to the event-based error,

∥u∗(x)− u∗(x̂j)∥ = ∥u∗(x)− u∗(x+ ej)∥ ≤ l∥ej∥,

where l is a positive real constant.
Furthermore, we present the following event-triggered IRL

algorithm.

Algorithm 3 (Event-triggered IRL)
1: Select an initial admissible policy u0(x) ∈ Ψ(Ω).
2: Policy Evaluation. Solve for V k(x(t)) using∫ t+T

t

U
(
x(τ), µ∗(x̂j)

)
dτ+V ∗(x(t+T )

)
−V ∗(x(t)) = 0,

(17)
with t = τj , j ∈ N and V k(0) = 0.

3: Policy Improvement. Update the event-triggered control
policy

µk+1(x̂j) = −1

2
R−1gT (x̂j)∇V k(x̂j), t = τj , j ∈ N.

Compared with the IRL algorithm, the policy evaluation
and policy improvement for the event-triggered IRL are only
occurred at the triggering instants t = τj with the sampled
state x̂j . Note that at the triggering instants, we have u∗(x) =
µ∗(x̂j), which means the right side of the equation (15) is
equal to zero. The Hamilton function H(x, µ∗(x̂j),∇V ∗) is
not equal to zero during the triggering intersample time, as a
transformation error is introduced because of the event-based
transformation from (7) to (14). A suitable triggering condition
should be designed to attain a tradeoff between the stabi-
lization and resource utilization. In the next section, we will
propose the NN-based event-triggered IRL with a designed
triggering condition which can guarantee the convergence of
the critic weights and the closed-loop system.

IV. APPROXIMATE OPTIMAL CONTROLLER DESIGN

In this section, a critic network is constructed to approxi-
mate the optimal value function. The NN-based optimal value
function can be formulated as

V ∗(x) = wT
c ϕ(x) + ε(x) (18)

where wc ∈ RN are the ideal weights of critic NN which in
turn corresponds to the stabilizing solution of the underlying
HJB equation, ϕ(x) ∈ RN is the activation function vector,
N is the number of hidden neurons, and ε ∈ R is the
approximation error of critic NN.

Assumption 2:
(a) The NN approximation error and its gradient are bound-

ed over the compact set R, i.e., ∥ε(x)∥ ≤ bε and ∥∇ε∥ ≤ b∇ε.
(b) The NN activation function and its gradient are bounded,

i.e., ∥ϕ(x)∥ ≤ bϕ and ∥∇ϕ(x)∥ ≤ b∇ϕ.
Using the value function approximation (18) in event-

triggered Bellman equation (17), it becomes

wT
c (ϕ(x(τj + T ))− ϕ(x(τj)))+

∫ τj+T

τj

U(x, µ(x̂j)dτ = ∆ετj

(19)
where ∆ετj =

∫ τj+T

τj
∇εT (f+gµ(x̂j))dτ . Under Assumption

1, we can deduce that ∆ετj is also bounded on the compact
set R, i.e., ∆ετj ≤ ∆εM .

Since the ideal weight matrix is unknown, the actual output
of critic NN can be presented as

V̂ (x) = ŵT
c ϕ(x), (20)

where ŵc represents the estimation of the unknown weight
matrix wc.

Based on the value function approximation, the control
policy is approximated by

µ̂(x) = −1

2
R−1gT (x)∇ϕ(x)ŵc (21)

Define the estimation errors of critic NN as

w̃c = wc − ŵc (22)



Therefore, the approximate Bellman equation becomes∫ t+T

t

U(x, µ̂(x))dτ+ŵT
c (t)

(
ϕ
(
x(t+ T )

)
− ϕ

(
x(t)

))
= e(t)

(23)
Denote that ∆ϕ

(
x(t)

) ∆
= ϕ

(
x(t + T )

)
− ϕ

(
x(t)

)
. The

Hamiltonian error e(t) provides useful information to adapt
the estimation weights. For the event-triggered mechanism,
transmitted measurements are available only at triggering
instants. Therefore, we define the Hamiltonian error at the
triggering instant tj as∫ τj+T

τj

U(x̂j , µ̂(x̂j))dτ + ŵT
c (τj)

(
ϕ
(
x(τj + T )

)
− ϕ

(
x(τj)

))
= e(τj)

(24)

where µ(x̂j) = −1
2R

−1gT (x̂j)∇ϕ(x̂j)ŵc denotes the event-
triggered control policy. The error can be reduced by a
gradient-descent method with the partial derivative toward ŵc

∂e(τj)

∂ŵc
= ϕ

(
x(τj + T )

)
− ϕ

(
x(τj)

) ∆
= ∆ϕτj

Let the tuning of critic NN be provided by ŵc(τj) = ŵc(τj−1)− αc
∆ϕτj(

1+∆ϕT
τj

∆ϕτj

)2 e(τj), t = τj

˙̂wc(t) = 0, τj−1 < t < τj
(25)

where αc > 0 denotes the learning rate.
Now, we will give the triggering condition to guarantee the

convergence of the critic weights and the closed-loop system
under the event-triggered updating law (25).

Theorem 1: Consider the nonlinear system with (1) and
the critic NN with (20). The critic NN is updated by (25).
The transmission of system states following the triggering
condition

∥ej(t)∥2 ≤ (1− β2)λmin(Q)∥x∥2 + ∥rTµ∗(x̂j)∥2

l2∥rT ∥2
(26)

where λmin is the minimal eigenvalue of Q, and β ∈ (0, 1)
is a designed sample frequency parameter. Then, the closed-
loop system state and critic estimation errors are Uniformly
Ultimately Bounded (UUB).

Proof: Consider the following Lyapunov function candi-
date

L =Lv + Lc

=

∫ t

t−T

V (x)dτ +
1

2
w̃T

c α
−1
c w̃c

(27)

1) (In interevent intervals, t ∈ (τj , τj+1)) During any
triggering intervals, the critic NN weights remain unchanged.

So the differential of L only includes L̇v. Along the evolution
of (f + gµ(x̂j)), the time derivative of Lv is

L̇v =

∫ t

t−T

(∇V (x))T
(
f + gµ(x̂j)

)
dτ

=

∫ t

t−T

−xTQx− uTRu+ (∇V (x))T g
(
µ(x̂j)− u(x)

)
dτ

=

∫ t

t−T

−xTQx+ uT (x)Ru(x)− 2uT (x)Rµ(x̂j)dτ

=

∫ t

t−T

−xTQx+ ∥rTu(x)− rTµ(x̂j)∥2 − ∥rTµ(x̂j)∥2dτ

(28)

Based on Assumption 1, we have

L̇v ≤
∫ t

t−T

−λmin(Q)∥x∥2+l2∥rT ∥2∥ek(t)∥2−∥rTµ(x̂j)∥2dτ
(29)

If the triggering condition is designed as (26), we can conclude
that

L̇ = L̇v ≤ −β2λmin(Q)∥x∥2 (30)

2) (At triggering instants, t = τj+1) Based on (30), we have
L̇v ≤ 0 during the interevent intervals. Note that the system
state x is continuous for the sample-data system. Hence, for
∀t = τj+1, we have Lv(x̂j+1) ≤ Lv((x̂

−
j+1)). According to

(27), the difference of Lc is written as

∆Lc =Lc(τj+1)− Lc(τ
−
j+1)

=
1

2
w̃T

c (τj+1)α
−1
c w̃c(τj+1)−

1

2
w̃T

c (τj)α
−1
c w̃c(τj)

(31)

According to the tuning law (25) of critic NN, we have its
discrete-time dynamical form

ŵc(τj+1) = ŵc(τj)− αc

∆ϕτj(
1 + ∆ϕT

τj∆ϕτj

)2 e(τj) (32)

Denote that ms =
(
1 + ∆ϕT

τj∆ϕτj

)
. Then, we have

w̃c(τj+1) =w̃c(τj) + αc

∆ϕτj

m2
s

×
(∫ τj+T

τj

U(x̂j , µ̂(x̂j))dτ + ŵT
c (τj)∆ϕτj

)
=w̃c(τj)− αc

∆ϕτj∆ϕT
τj

m2
s

w̃c(τj)

+ αc

∆ϕτj

m2
s

(
wT

c ∆ϕτj +

∫ τj+T

τj

U(x̂j , µ̂(x̂j))dτ
)

=w̃c(τj)− αc

∆ϕτj∆ϕT
τj

m2
s

w̃c(τj) + αc

∆ϕτj

m2
s

∆ετj

(33)

where ∆ετj =
∫ τj+T

τj
∇εT ẋdτ .



So ∆Lc has

∆Lc =
1

2
w̃T

c (τj+1)α
−1
c w̃c(τj+1)−

1

2
w̃T

c (τj)α
−1
c w̃c(τj)

=− w̃T
c (τj)

∆ϕτj∆ϕT
τj

m2
s

w̃c(τj) + w̃T
c (τj)

∆ϕτj

m2
s

∆ετj

+
αc

2

(
−

∆ϕτj∆ϕT
τj

m2
s

w̃c(τj) +
∆ϕτj

m2
s

∆ετj

)2

≤− 1

2

∥∥∥∥∥∆ϕτj∆ϕT
τj

m2
s

∥∥∥∥∥ ∥w̃c(τj)∥2 +
∆ε2τj
2∥m2

s∥

+ αc

∥∥∥∥∆ϕτj

m2
s

∥∥∥∥2 ∆ε2τj + αc

∥∥∥∥∥∆ϕτj∆ϕT
τj

m2
s

∥∥∥∥∥
2

∥w̃c(τj)∥2

(34)

Note that
∥∥∥∥∆ϕτj

∆ϕT
τj

m2
s

∥∥∥∥ < 1, we have

∆L ≤ ∆Lc ≤− (
1

2
− αc)

∥∥∥∥∥∆ϕτj∆ϕT
τj

m2
s

∥∥∥∥∥ ∥w̃c(τj)∥2

+
∥m2

s∥+ 2αc∥∆ϕτj∥2

2∥m2
s∥2

∆ε2M

(35)

Therefore, if the following conditions are satisfied:

αc <
1

2

∥w̃c(τj)∥ ≤

√
2
(
∥m2

s∥+ αc∥∆ϕτj∥2
)
∆ε2M

(1− 2αc)∥m2
s∥∥∆ϕτj∥2

Combining (30) and (35), we can know that the closed-
loop system and the critic NN are UUB under the triggering
condition (26), which means it will uniformly converge to the
optimal solution. This completes the proof.

V. SIMULATION STUDY

Consider the following nonlinear system:

ẋ = f(x) + g(x)u (36)

where

f (x) =

[
−x1 + x2

−0.5 (x1 + x2) + 0.5x2 sin (x1)
2

]
,

g (x) =

[
0

sin (x1)

]
.

Let Q and R be identity matrices of approximate dimension-
s. The parameter of triggering condition is chosen as l = 5,
β = 0.9. The learning rate is chosen as αc = 0.2, and the
integral interval T = 0.05s. We choose the critic NN with
structure 3−5−1. The critic NN activation function is chosen
as ϕ(x) = [x2

1 x1x2 x2
2 x4

1 x4
2]

T . Let the initial state be
x0 = [1,−1]T . We choose the initial weights of critic NN
as ŵc(0) = [0.327, 0.018, 0.425, 0.467, 0.339]T . Note that an
exponent-form probing noise is added to the control input
before 25s to trade off exploration and exploitation in the
proposed RL algorithm. The trajectories of system states are

shown in Fig. 1. The system states are converged to the
equilibrium point rapidly after 23s. The convergence curves
of critic weights are shown in Fig. 2. The triggering condition
is triggered 118 times, which means that the event-based
controller uses 118 samples of the states while the time-
triggered controller uses 800 samples. This will reduce the
number of controller updates during the learning process. The
triggering instants during the learning process for the control
policy is illustrated in Fig. 3. The trajectory of the event-
triggered control input during the learning process is shown
in Fig 4. The simulation results prove the effectiveness of the
proposed event-triggered IRL algorithm.
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VI. CONCLUSION

In this paper, we propose an event-triggered IRL algorithm
for the nonlinear continuous-time systems with partially un-
known dynamics. Compared with [17, 18], the identification
process is not required. For the implementation purpose, a
critic NN is constructed to approximate the optimal value
function and optimal control policy. Then, the UUB of critic
weights are guarantee using Lyapunov method. Simulation
results prove the effectiveness of the proposed event-triggered
IRL scheme.
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