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Abstract—For almost two decades, quality indicators (QIs)
have been used to assess and compare Multi-Objective Evo-
lutionary Algorithms (MOEAs). Each QI represents different
preferences of the Decision Maker which implies that not all
indicators rank the approximation sets generated by MOEAs in a
similar fashion. In fact, they are sometimes in conflict. The most
general property that a QI should have is Pareto-compliance,
which means that every time an approximation set is better
than another in a Pareto sense, the indicator must reflect this.
Regarding unary indicators, the hypervolume is the only known
Pareto-compliant indicator, and the remaining are weakly Pareto-
compliant or non Pareto-compliant. Additionally, to the authors’
best knowledge, there is not theoretical study that considers the
combination of indicators in order to produce new ones. In this
paper, we propose a theoretical basis to combine existing weakly
Pareto-compliant indicators with at least one Pareto-compliant,
being the resulting combined indicator Pareto-compliant. The
consequences of these new combined indicators are threefold:
1) increase the variety of available indicators to achieve/adjust
desired distributions on the Pareto front, 2) correct weakly
Pareto-compliant indicators such that they are Pareto-compliant,
and 3) generate new selection mechanisms for MOEAs.

Index Terms—Quality Indicators, Combined Quality Indica-
tors, Multi-Objective Optimization, Indicator-based selection

I. INTRODUCTION

EVOLUTIONARY Multi-Objective Optimization
(EMOO) originated in the mid-1980s, has been

steadily growing since the late 1990s, focusing on the
solution of problems with several, often conflicting, objective
functions [1]. These problems are the so-called multi-objective
optimization problems (MOPs). Due to the conflict among the
objectives, the solution to a MOP consists of an infinite set of
vectors, denoted as the Pareto optimal front, that represents
the best possible trade-offs among them.

Through the years, different techniques have been developed
to solve MOPs [1], [2]. However, Multi-Objective Evolution-
ary Algorithms (MOEAs) have arose as a popular option in the
last three decades for solving highly complex MOPs. MOEAs
are stochastic set-based metaheuristics inspired by the princi-
ples of natural evolution of organisms. Commonly, MOEAs
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Fig. 1. Different cases of convergence, distribution and spread of solutions
in Pareto fronts. The continuous line depicts the Pareto optimal front and the
black points represent an approximation set.

have employed the Pareto dominance relation1 in furtherance
of selecting the fittest solutions. MOEAs produces at each
execution a discrete set of solutions that aim to approximate
the Pareto optimal front. Depending on the design of each
MOEA, the approximation sets will exhibit different proper-
ties. According to Zitzler et al. [3], the most representative
features of an approximation set are: 1) the distance between
it and the Pareto optimal front, denoted as convergence, 2) the
uniform distribution of points, and 3) the spread of solutions.
Figure 1 shows various approximation sets, having the above
mentioned characteristics, where case IV is the ideal one
because it exhibits a convergent approximation that covers the
entire Pareto optimal front and it is evenly distributed.

Currently, there is a wide variety of MOEAs in the special-
ized literature [4], [5], [6], [7], [8], [9]. Due to the No-Free
Lunch Theorem, a MOEA cannot show a good performance
in all types of MOPs. Hence, an important question is to
determine which is the best MOEA for each MOP. At first,
researchers visually compared the approximated Pareto fronts
generated by MOEAs [10]. It was until the mid-1990s that
some isolated efforts were undertaken to try to (numerically)
assess the performance of MOEAs [11], [12], [13] by using
quality indicators (QIs) which are functions that assign a real
value to an approximated Pareto front. However, the PhD
thesis of David Van Veldhuizen [14] can be considered as
the cornerstone of QIs due to his comprenhensive review of
most of the currently available indicators. Moreover, due to to
stochastic nature of MOEAs, Van Veldhuizen and Lamont [15]
proposed a non-parametric statistical method to analyze their
performance based on QIs values. Since then, this methodol-

1A vector Pareto dominates another one if the former is as good as the
latter in all of the components but better in at least one of them.
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ogy has been typically adopted by EMOO community in order
to draw conclusions.

Mathematically, QIs are functions that assign a real value
to an approximation set, i.e., they impose a total order among
sets of solutions [16]. However, the overall complexity of QIs
is greater because they posses several properties that are shown
in Fig. 2. The number of approximation sets that a QI is able
to assess determines its cardinality. The performance criteria
is related to what a QI measures: capacity, convergence,
diversity (divided into distribution and spread of solutions) or
convergence-diversity. Pareto compliance is directly related to
convergence QIs and it roughly states if a QI is compliant with
the Pareto dominance relation. The sensitivity of a QI to the
different units and scales of the objective functions determines
its scaling invariance. If the indicator computation requires
knowledge of the MOP being solved, then it is knowledge-
dependent. Similarly, a QI is parameter-dependent if it needs
user-supplied parameters. A critical aspect in the practical field
is its runtime complexity. Additionally, scalability in objective
space is an important characteristic that should be taken into
account as current MOEAs are generating approximation sets
in highdimensional objective spaces, thus, it is crucial to know
if the indicator correctly evalutes them.

Since the late 1990s, several QIs have been proposed to
assess different aspects of the Pareto front approximations
[17], [18]. However, convergence QIs are the most important,
being the hypervolume (HV) indicator the most representative
[19]. HV is a convergence-diversity QIs that measures the
dominated volume between the approximation set and an anti-
optimal reference point. Additionally, HV is the only unary
indicator that is known to be Pareto-compliant [20]. Despite
its nice mathematical properties, HV is highly computational
expensive when the dimension of the objective space increases.
Consequently, other QIs have been proposed such as the R2
[21], the Inverted Generational Distance plus indicator (IGD+)
[22] and the ε+ indicator [16]. These QIs are computationally
cheaper than HV but they have weaker mathematical proper-
ties, i.e., they are weakly Pareto-compliant2. However, there
is not a single QI that assesses all the desired features of
an approximation set, since each indicator shows different
properties [16], [23].

In this paper, we introduce a mathematical framework to
combine unary Pareto-compliant and weakly Pareto-compliant
indicators by using order-preserving utility functions. Hence,
a new family of Pareto-compliant utility indicators (PCUIs)
is defined. The purpose of these PCUIs are twofold: 1)
increase the number of Pareto-compliant indicators having
different preferences, and 2) correct weakly Pareto-compliant
by making them Pareto-compliant. Since currently the only
unary Pareto-compliant indicator is the hypervolume, we use
it as the base to form PCUIs and, additionally, we employ
the R2, IGD+, and ε+ indicators that are weakly Pareto-
compliant. In order to prove the usefulness of PCUIs, we
analyze their preferences by correlating the way they rank
various distribution of points generated by state-of-the-art
MOEAs.

2See. Property 2.
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Fig. 2. Main features of quality indicators.

The remainder of the paper is organized as follows. Section
II outlines the related work. A set of mathematical concepts
required for the understanding of the paper are defined in
Sect. III. The mathematical framework of the combination
of QIs is introduced in Sect. IV. Section V presents the
experimental results using the combined indicators. Finally,
the main conclusions and future work are described in Sect.
VI.

II. PREVIOUS RELATED WORK

To the authors best knowledge, there is no work that
proposes the mathematical combination of quality indicators
in order to define new ones. However, there is a number of
approaches that propose MOEAs using multiple indicators
in furtherance of guiding the selection process. This kind
of MOEAs combine the individual effect, or bias, of each
indicator in order to select solutions and drive the population
to the Pareto optimal front. In the following, these proposals
are introduced.

The core idea of Multi-Indicator-based MOEAs (MIB-
MOEAs) is to combine the properties of each indicator-
based mechanism in order to obtain a global search be-
havior. Phan and Suzuki [24] were apparently the first to
propose a MIB-MOEA (called BIBEA) that boosts existing
IB-selection operators, using the AdaBoost algorithm. The
proposed multi-indicator selection aims to select the potential
parents for crossover. In a further work, Phan et al. [25]
improved BIBEA’s parent selection by using an ensemble
learning method and they also proposed a multi-indicator
environmental selection. An issue of both proposals is that
they required supervised off-line training, using certain MOPs.
Hence, apparently, they could not solve any MOP. Unfortu-
nately, the experimental results did not show that the proposals
outperformed state-of-the-art MOEAs.

On the other hand, Hernández and Coello [26] proposed a
MOEA, called Many-Objective Metaheuristic Based on the
R2 Indicator (MOMBI-III), that combines the convergence
effect of an R2-selection mechanism and a density estimator
based on the s-energy indicator [27] for improving diversity.
Additionally, the R2-selection employs a hyper-heuristic to
select the most suitable utility function for the R2 indicator.
Their experimental results showed that MOMBI-III outper-
forms state-of-the-art MOEAs.

Finally, in 2018, Falcón-Cardona and Coello [6] proposed
the Multi-Indicator Evolutionary Hyper-Heuristic (MIHPS)
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that has a pool of four selection density estimators based on
the R2, IGD+, ε+ and ∆p [28] indicators. MIHPS analyzes
the convergence behavior of each indicator-based density
estimator (IB-DE) in order to update the transition weights
of a Markov chain. Hence, the core idea is to select under
certain probability the best IB-DE depending on the online
behavior of the algorithm. The main result of MIHPS is
that the IB-DEs based on IGD+, ε+ and ∆p improve the
convergence behavior and are suitable for the early stages of
the evolutionary process, meanwhile the R2 indicator is better
to improve diversity and refine convergence at the end of the
evolutionary process.

III. BACKGROUND

In this section, we provide the mathematical basis for the
understanding of the paper. First, we briefly introduce the basic
concepts related to multi-objective optimization, following the
definitions provided by Coello et al. [1]. Then, we review four
state-of-the-art quality indicators (namely, HV, R2, IGD+ and
ε+) because of their importance in the EMOO community.

A. Multi-Objective Optimization

The general multi-objective optimization problem3 (MOP)
is formulated as:

min
~x∈Rn

~F (~x) := [f1(~x), f2(~x), . . . , fm(~x)]
T (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . , k (2)

hj(~x) = 0 j = 1, 2, . . . , p (3)

where ~x = (x1, x2, . . . , xn)
T is the n-dimensional vector of

decision variables; fi : Rn → R, i = 1, . . . ,m are the
objective functions and gi, hj : Rn → R, i = 1, . . . , k,
j = 1, . . . , p are the constraint functions of the problem which
define that feasible region Ω.

Definition 1 (Weak Pareto Dominance). Given two vectors
~u,~v ∈ Rn, we say that ~u weakly dominates ~v (denoted by
~u � ~v) if ui ≤ vi for all i = 1, . . . , n.

Definition 2 (Pareto Dominance). Given two vectors
~u,~v ∈ Rn, we say that ~u dominates ~v (denoted by ~u ≺ ~v) if
ui ≤ vi for i = 1, . . . , n and there exists at least an index
j ∈ {1, . . . ,m} such that uj < vj .

Definition 3 (Strict Pareto Dominance). Given two vectors
~u,~v ∈ Rn, we say that ~u strictly dominates ~v (denoted by
~u ≺≺ ~v) if ui < vi for all i = 1, . . . , n.

Definition 4 (Pareto Optimality). We say that a vector of
decision variables ~x∗ ∈ Ω is Pareto optimal if there does

3Without loss of generality, we will assume only unconstrained minimiza-
tion problems. To transform a minimization problem into a maximization one,
we can use: max f = −min(−f)

TABLE I
RELATIONS ON APPROXIMATION SETS BASED ON PARETO DOMINANCE

RELATIONS. A ≺≺ B ⇒ A ≺ B ⇒ A C B ⇒ A � B.

Relation Description

A ≺≺ B ∀~b ∈ B, ∃~a ∈ A : ~a ≺≺ ~b

A ≺ B ∀~b ∈ B, ∃~a ∈ A : ~a ≺ ~b

A C B ∀~b ∈ B, ∃~a ∈ A : ~a � ~b ∧ A 6= B

A � B ∀~b ∈ B, ∃~a ∈ A : ~a � ~b

A ‖ B A 6� B ∧ B 6� A

not exist another ~x ∈ Ω such that ~F (~x) ≺ ~F ( ~x∗).

Definition 5. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x∗ ∈ Ω | ~x is Pareto optimal}

Definition 6. The Pareto Front PF∗ is defined by:

PF∗ = {~F (~x∗) ∈ Rm | ~x∗ ∈ P∗}

Definition 7 (Approximation Set). Let A ∈ Ψ be a
finite set of m-dimensional objective vectors. A is called
an approximation set or approximate Pareto front if
∀~u,~v ∈ A, ~u 6= ~v it holds that ~u 6� ~v ∧ ~v 6� ~u. The set of all
approximation sets is denoted as Ψ.

Definition 8. The Ideal Objective Vector (~z∗ ∈ Rm) is
constructed using the minimum of each of the objective
functions, considered separately. Each ith-component of the
ideal vector is defined as z∗i = min~x fi(~x).

Definition 9. The Nadir Objective Vector (~znad ∈ Rm)
is constructed using the worst values of PF∗. Each ith-
component is defined as znadi = max~x∈P∗ fi(~x).

Based on the three types of Pareto dominance relations, it is
possible to define dominance relations between approximation
sets, according to Zitzler et al. [16]. Table I shows five types
of set dominance relations.

B. Review of quality indicators

In this section, we first introduce in Definition 10 what is
a unary quality indicator. Then, we mathematically define the
indicators: HV, R2, IGD+, and ε+. The properties of these
indicators are outlined in Table II. In all cases, let A be
an approximation set, Z be a reference set and m be the
dimension of the objective space.

Definition 10 (Unary Quality Indicator). A unary quality
indicator I is a function I : Ψ → R, which assigns a real
value to each approximation set A.

Definition 11 (Hypervolume). Let Λ denote the Lebesgue
measure, then HV is defined as follows:

HV (A, ~zref ) = Λ

(⋃
~a∈A

{~x | ~a ≺ ~x ≺ ~zref}

)
, (4)
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TABLE II
PROPERTIES OF THE MOST COMMONLY QIS EMPLOYED BY IB-MOEAS. C MEANS CONVERGENCE AND C/D MEANS CONVERGENCE-DIVERSITY. N

DENOTES THE POPULATION SIZE AND M IS RELATED TO THE SIZE OF THE REFERENCE SET OR SET OF WEIGHT VECTORS. m IS THE NUMBER OF
OBJECTIVE FUNCTIONS.
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HV Unary C/D Strict Reference point No No Yes High [19]

R2 Unary C/D Weak Reference point Weight vectors
Utility functions No Yes O(mNM) [21]

IGD+ Unary C/D Weak Reference set No Yes Yes O(mNM) [22]
ε+ Unary C Weak Reference set No No Yes O(mNM) [16]

where ~zref ∈ Rm is a reference point which should be
dominated by all points in A.

Definition 12 (Unary R2 indicator). The unary R2 indicator
is defined as follows:

R2(A,W ) = − 1

|W |
∑
~w∈W

max
~a∈A
{u~w(a)}, (5)

where W is a set of m-dimensional weight vectors and u~w :
Rm 7→ R is a scalarizing function, parameterized by ~w ∈W ,
that assigns a real value to each solution vector.

Definition 13 (Inverted Generational Distance plus). The
IGD+, for minimization, is defined as follows:

IGD+(A,Z) =
1

|Z|
∑
~z∈Z

min
~a∈A

d+(~a, ~z) (6)

where d+(~a, ~z) =
√∑m

k=1 (max{ak − zk, 0})2.

Definition 14 (Unary ε+ indicator). The unary ε+-indicator
gives the minimum distance by which a Pareto front approx-
imation needs to or can be translated in each dimension in
objective space such that a reference set is weakly dominated.
Mathematically, it is defined as follows:

ε+(A,Z) = max
~z∈Z

min
~a∈A

max
1≤i≤m

{zi − ai}. (7)

IV. COMBINATION OF QUALITY INDICATORS

For almost two decades, quality indicators have been
designed to assess approximation sets generated by multi-
objective optimizers [19], [29], [28], [22], [21]. Each indicator
represents different preferences and, thus, not all the quality
indicators evaluate approximation sets in the same way [23],
[30]. In fact, they are sometimes in conflict. However, to the
authors’ best knowledge, the effect of combining indicators, in
order to produce new ones, has not been studied. In this work,
we focus on this question and we propose a methodology
to combine existing indicators. In the following, we present
the theoretical aspects that support the combination of quality
indicators.

Definition 15 (Combination function). A combination function
C : Rk → R assigns a real value to a vector ~I =
(I1, I2, . . . , Ik), where each Ij is a unary indicator.

Definition 16 (Combined Indicator). Given a vector of k
indicators ~I = (I1, I2, . . . , Ik) and a combination function
C, a combined indicator I is defined as follows: I = C(~I).

Clearly, Definitions 15 and 16 describe a combined indicator
I as a general function that transforms a vector of indicator
values into a single real value. However, for getting more
important theoretical results, we should say something about
the properties of each Ij , j = 1, . . . , k and the combination
function. Hansen and Jaszkiewicz [29] defined when the
evaluation of two approximation sets by a certain indicator
is compatible with the result of Pareto-based outperformance
relation applied to these two sets. Hence, an indicator could
be compliant or weakly compliant with the outperformance
relation. In our case, let C be the outperformance relation
(see Table I). The following two properties formally state both
terms. Without loss of generality, let us assume that a greater
indicator value corresponds to a higher quality.

Property 1 (Pareto compliance). Given two approximation
sets A and B, a unary indicator I is C-compliant (Pareto
compliant) if AC B ⇒ I(A) > I(B).

Property 2 (Weakly Pareto compliance). Given two approx-
imation sets A and B, a unary indicator I is weakly C-
compliant (weakly Pareto compliant) if A C B ⇒ I(A) ≥
I(B).

Based on the above definitions, we construct an special
vector of indicators that is necessary for the refinement of
the combined indicator model.

Definition 17 (Compliant Indicator Vector).
~I = (I1, I2, . . . , Ik) ∈ Q is called a compliant indicator
vector (CIV) if ∀j = 1, . . . , k, Ij is weakly Pareto compliant
and there exists at least an index t ∈ {1, . . . , k} such that It
is Pareto compliant.

Theorem 1 (Construction of Pareto-compliant combined in-
dicators). Let I1, . . . , Ik be unary indicators that form a
compliant indicator vector ~I . A combined indicator I(~I) is
C-compliant if it has the order-preserving property:

∀~u,~v ∈ Rk, ~u � ~v ⇒ I(~u) > I(~v).
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Proof. Consider two approximation sets A and B such that
A C B and let ~IA = ~I(A) and ~IB = ~I(B), where ~I is a
CIV. Then, AC B ⇒ ~IA � ~IB because the Pareto-compliant
indicators get better and the weakly Pareto-compliant ones
get better or stay equal. Moreover, by definition ~IA � ~IB ⇒
I(~IA) > I(~IB). Hence, by transitivity of⇒, it holds ACB ⇒
I(~IA) > I(~IB), i.e., I is Pareto-compliant.

Theorem 1 provides a sufficient condition for constructing
Pareto-compliant combined indicators on the basis of compli-
ant indicator vectors. In other words, a combined indicator
preserves the Pareto-compliant property because of the use of
order-preserving combination functions.

Remark 1. The condition of Theorem 1 is suffcient but not
necessary. For instance, given ~I = (I1, I2, . . . , Ik) where I1
is Pareto-compliant and the Ij , j = 2, . . . , k are not Pareto-
compliant, the combined indicator I(~I) = I1 is also Pareto-
compliant. Hence, there is a big a number of possibilities to
construct combined indicators.

An important question that arises is why it is important to
construct new Pareto-compliant indicators. For answering this
question, let us consider the Zero indicator (Z) that assigns a
zero value to all the approximation sets, i.e., Z : Ψ→ 0. For
every A and B such that A ≺ B, it implies Z(A) = Z(B),
i.e., Z weakly Pareto-compliant. Although indicators such as
R2, IGD+ and ε+ are more complex than Z in a mathematical
sense, all of them are weakly Pareto-compliant. Hence, we can
see that is not enough to construct a QI having this property in
spite of clear advantage related to have QI less computational
expensive than HV. In consequence, there is a need of new
Pareto-compliant indicators and weakly Pareto-compliant QIs
can be employed to redefine the preferences of the only Pareto-
compliant indicator know so far, i.e., the hypervolume.

There exists many combination functions that have the
property of Theorem 1. However, in this paper, we focus on
certain utility functions [2], [31] u : Rk → R that hold the
desired property. An utility function (UI) is a model of the
Decision Maker preferences that assigns to each k-dimensional
vector an utility value. Thus, a combination function C can be
defined in terms of these functions. Generally, UIs employ a
convex weight vector ~w ∈ Rk such that

∑k
i=1 wi = 1, wi ≥ 0.

However, for our purpose, we only consider wi > 0, i =
1, . . . , k such that all indicator values are considered in the
combined indicator. Based on the above, a Pareto-compliant
utility indicator (PCUI) is defined as follows:

Definition 18 (Utility indicator). Given an utility function
u : Rk → R, an indicator vector ~I ∈ Rk that assess an
approximation set A and a weight vector ~w ∈ Rk such
that wi > 0, i = 1, . . . , k, we denote an utility indicator
as u~w(~I(A)). If u is also order-preserving as required in
Theorem 1, u~w(~I(A)) is denoted as Pareto-compliant utility
indicator.

In this work, we focused our attention in two utility func-
tions that are order-preserving, namely, the weighted sum func-
tion (WS) and the augmented Tchebycheff function (ATCH)
[2], [31]. In the following, we prove that both WS and ATCH

are order-preserving functions and, thus, can be employed to
define PCUIs.

Definition 19. The weighted sum (WS) is defined by the
following formula:

WS~w(~x) =

k∑
i=1

wixi, (8)

where ~x, ~w ∈ Rk and wi ≥ 0, i = 1, . . . , k.

Lemma 1. Given two CIVs ~x, ~y ∈ Rk and a weight vector
~w ∈ Rk, wi > 0, i = 1, . . . , k, then if ~x � ~y ⇒ WS~w(~x) >
WS~w(~y).

Proof. Let’s prove this lemma by induction. Let us consider,
without loss of generality, that the first component of both
CIVs is related to a Pareto-compliant indicator and the rest of
components are related to weakly Pareto-compliant indicators,
i.e., x1 > y1 ∧ xi ≥ yi, i = 2, . . . , k.

Base case: for k = 2, we have x1 > y1 ∧ x2 ≥ y2. Then
w1x1 + w2x2 > w1y1 + w2y2.

Inductive hypothesis: Given ~x, ~y ∈ Rk, then
∑k

i=1 wixi >∑k
i=1 wiyi.
Inductive step: We want to prove that

∑k
i=1 wixi +

wk+1xk+1 >
∑k

i=1 wiyi +wk+1yk+1. Without loss of gener-
ality, let us assume that the (k+ 1) components are related to
a weakly Pareto-compliant indicator, then xk+1 ≥ yk+1 and
for every wk+1 > 0 it follows that wk+1xk+1 ≥ wk+1yk+1.
From the above statement and the inductive hypothesis, we
have the following:

k∑
i=1

wixi + wk+1xk+1 >

k∑
i=1

wiyi + wk+1yk+1

WS~w(~x) > WS~w(~y)

Hence, ~x � ~y ⇒WS~w(~x) > WS~w(~y).

For the Augmented Tchebycheff function, we assume with-
out loss of generality that ~x ∈ Rk

+. In consequence, the
absolute values in the original definition are not necessary.
In fact, by not considering the absolute values, the function is
order preserving in the whole Rk.

Definition 20 (Augmented Tchebycheff). Given ~x, ~w ∈ Rk

with wi ≥ 0, the Augmented Tchebycheff function (ATCH) is
defined as follows:

ATCH~w(~x) = max
i=1,...,k

{wixi}+ α

k∑
i=1

xi (9)

Lemma 2. Given two CIVs ~x, ~y ∈ Rk and a weight vector
~w ∈ Rk, wi > 0, i = 1, . . . , k, then if ~x � ~y ⇒ ATCH~w(~x) >
ATCH~w(~y).

Proof. Let’s prove this lemma by induction. Let us consider,
without loss of generality, that the first component of both
CIVs is related to a Pareto-compliant indicator and the rest of
components are related to weakly Pareto-compliant indicators,
i.e., x1 > y1 ∧ xi ≥ yi, i = 2, . . . , k.
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Base case (k = 2): Since ~x � ~y, it is straightforward
to see that A = α(x1 + x2) > α(y1 + y2) = B. Let
i∗ = arg maxi=1,2 {wixi} be the index of the maximum value.
Then, we have one of the following two cases:

1) if i∗ = 1, w1x1 > w1y1 and w1x1 ≥ w2x2 ≥ w2y2, or
2) if i∗ = 2, w2x2 ≥ w2y2 and w2x2 ≥ w1x1 > w1y1.
From these two cases, it is clear that maxi=1,2 {wixi} ≥

maxi=1,2 {wiyi}. However, since A > B, it follows: ~x � ~y ⇒
max {w1x1, w2x2}+A > max {w1y1, w2y2}+B.

Inductive hypothesis: For ~x, ~y ∈ Rk, it holds that A =
α
∑k

i=1 xi > α
∑k

i=1 yi = B because ~x � ~y. Let i∗ =
arg maxi=1,...,k {wixi} and j∗ = arg maxj=1,...,k {wjyj} be
the indexes related to the maximum values. Due to the
construction of ~x and ~y, we have one of the following two
cases:

1) if i∗ = 1, w1x1 > w1y1 and w1x1 ≥ wtxt ≥ wtyt, t =
2, . . . , k, or

2) if i∗ ∈ {2, . . . , k}, wi∗xi∗ ≥ wi∗yi∗ and wi∗xi∗ ≥
w1x1 > w1y1 and wi∗xi∗ ≥ wtxt ≥ wtyt, t =
2, . . . , k ∧ t 6= i∗.

This implies that wi∗xi∗ ≥ wj∗yj∗ . However, since A > B,
then it is clear that ~x � ~y ⇒ wi∗xi∗ +A > wj∗yj∗ +B.

Inductive step: We want to prove the following:

~x � ~y ⇒

max
i=1,...,k+1

{wixi}+ α

k+1∑
i=1

xi > max
i=1,...,k+1

{wiyi}+ α

k+1∑
i=1

yi.

Without loss of generality, let us assume that the (k + 1)
components are related to a weaky Pareto-compliant indicator,
then xk+1 ≥ yk+1. Based on our inductive hypothesis, we
know that A > B. Taking the summation upper limits equal
to k + 1, the inequality still holds, thus A = α

∑k+1
i=1 xi >

α
∑k+1

i=1 yi = B. Additionally, despite of considering the k+1
elements, maxi=1,...,k+1 {wixi} ≥ maxi=1,...,k+1 {wiyi} be-
cause one of the above two cases happens. Hence, ~x � ~y ⇒
maxi=1,...,k+1 {wixi}+α

∑k+1
i=1 xi > maxi=1,...,k+1 {wiyi}+

α
∑k+1

i=1 yi.

V. EXPERIMENTAL RESULTS

In this section, we report the experimental results con-
cerning PCUIs. The main goal is to analyze the preferences
imposed by PCUIs using MOPs with different Pareto front
geometries. For this purpose, a number of MOEAs, having
characteristic distributions, are ranked by the PCUIs of Table
III and the individual indicators HV, R2, IGD+, and ε+. Then,
we correlate the rankings associated to each indicator in order
to determine their relationships.

We employed the Lamé superspheres problems [32] using 2,
3 and 4 objective functions. Lamé problems represent the in-
tersection of Lamé superspheres with the positive Rm-orthant.
These test problems require a parameter γ that changes the
geometry as follows: if 0 < γ < 1, we obtain a convex
geometry, γ = 1 defines a linear Pareto front, and γ > 1 is
related to concave Pareto fronts. Table IV shows the MOPs
employed in the experiments with regard to the geometry

TABLE III
PCUIS DEFINED ON THE BASIS OF THE INDICATORS HV, R2, IGD+ AND
ε+ , USING THE ORDER-PRESERVING UTILITY FUNCTIONS WS AND

ATCH. FOR EASE OF NOTATION, WE OMIT ~w AS SUBINDEX FOR THE
PCUIS. IN ALL CASES, ~w = (0.5, 0.5).

UI (HV, R2) (HV, IGD+) (HV, ε+)
WS WS(HV, R2) WS(HV, IGD+) WS(HV, ε+)

ATCH ATCH(HV, R2) ATCH(HV, IGD+) ATCH(HV, ε+)

TABLE IV
MOPS EMPLOYED IN THE EXPERIMENTS. MIRROR PROBLEMS INVERT
THE GEOMETRY OF THE LAMÉ SUPERSPHERES PROBLEMS [32]. THE γ

VALUE CHANGES THE GEOMETRY OF THE PARETO FRONTS.

γ Lamé Mirror
0.25 Convex Concave
0.50 Convex Concave
0.75 Convex Concave
1.00 Linear Linear
1.50 Concave Convex
2.00 Concave Convex
6.00 Concave Convex

of the associated Pareto front. The Pareto fronts of Lamé
problems are highly correlated with the simplex defined by a
set of convex weight vectors4. In order to see the performance
of PCUIs in problems having Pareto fronts not correlated
with the simplex explained above, we employed the Mirror
problems [32] that invert the geometry of the Lamé problems.

A. Analysis of preferences

When evaluating Pareto front approximations, quality in-
dicators impose different preferences and, thus, MOEAs are
usually ranked in a different way [16]. On the one hand, it is
well know that approximation sets having a high concentration
of points around the knee of the Pareto front are preferred by
the hypervolume [33]. On the other hand, the R2 indicator
rewards MOEAs that produce evenly distributed solutions due
to the use of the convex weight vectors and the employed
scalarizing function [21]. However, currently, it is far from
being completely understood what are the preferences of QIs.
Moreover, to the authors’ best knowledge, there are only two
works that aim to empirically establish relationships among
QIs, these are the studies of Jiang et al. [30] and Liefooghe
and Derbel [23]. The latter proposes an interesting correla-
tion analysis, using the Kendall’s τ correlation [34], among
different QIs based on how they rank different distribution of
points.

In furtherance of analyzing the preferences of the proposed
PCUIs, we follow a similar methodology to that introduced
by Liefooghe and Derbel. Hence. The adopted indicators in
our study are HV, R2, IGD+, ε+ and the six PCUIs defined
in Table III. We selected nine MOEAs that produce particular
distributions of points so that we can determine how PCUIs
and the base indicators rank them, using the Lamé and Mirror
problems of Table IV for 2, 3 and 4 objective functions. The
selected MOEAs can be classified according to their design
methology as follows:

4A vector ~w ∈ Rm is a convex weight vector if and only if
∑m

i=1 wi = 1
and wi ≥ 0, i = 1, . . . ,m.
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• Pareto-based MOEAs: NSGA-II [4] and SPEA2 [35].
• Decomposition: MOEA/D [7].
• Indicator-based MOEAs: SMS-EMOA [8], MOMBI2 [9],

IGD+-MaOEA [36] and ∆p-MaOEA5.
• Analysis of Parallel coordinates: MOVAP [37]
The parameter settings for the considered MOEAs are as

follows. For 2, 3 and 4 objective functions, the number n of
decision variables are 6,7 and 8, respectively. Moreover, we
always use a population size of 120 individuals and 50000
function evaluations as stopping criterion. In all cases, for
the simulated binary crossover and the polynomial mutation
employed by all the MOEAs, the crossover probability is set
to 0.9, the mutation probality is equal to 1/n, and both the
crossover distribution and the mutation distribution indexes
are set to 20. MOEA/D, NSGA-III, MOMBI2, WS(HV, R2)
and ATCH(HV, R2) employ N = Cm+h−1

m−1 weight vectors,
where h is set to 119, 14 and 7 for 2, 3, and 4 objectives,
respectively. MOVAP needs a resolution factor for the analysis
of the paralllel coordinates image that, in case of 2 objectives
is set to 3, and for 3 and 4 objective functions, it is equal to
2. Finally, p = 2 for ∆p-MaOEA in every case.

According to the theoretical framework of Sect. IV, the
combined indicators are to be maximized. However, originally,
the aim is to minimized R2, IGD+ and ε+. In order to avoid
this issue, we multiply the values by −1 and, then, the values
are normalized, including HV, so that the range of all indica-
tors is [0, 1]. For HV, the reference point ~zref = (1.1, . . . , 1.1).
The R2 indicator uses the Vector Angle Distance Scaling util-
ity function [31]. Regarding the reference sets for IGD+ and
ε+, Pareto fronts of size 5000 were generate by enumeration
for all cases. Then, these supersets were reduced to 200, 300,
and 400 points for 2, 3 and 4 objective functions, respectively.
We employed a steady-state selection based on the s-energy
indicator [27] in order to reduce the supersets and generate an
even distribution of points.

1) First-ranked MOEA: Table V shows the first-ranked
MOEAs associated to all the considered indicators for the
Lamé problems. Due to the good performance of most of
the considered MOEAs in these problems, the preferences
are not very different from what it is expected. HV prefers
in all the problems SMS-EMOA since it is an HV-based
MOEA. R2 always prefers MOEAs that use a set of con-
vex weight vectors, i.e., MOMBI2, MOEA/D and NSGA-III
because these approaches produce evenly distributed Pareto
fronts. IGD+ and ε+ mostly ranked SMS-EMOA as the
best algorithm, although for γ = 1.0, they select MOEAs
based on convex weight vectors. Concerning WS(HV, R2) and
ATCH(HV, R2), their preferences are similar. It is interesting
to see that for convex problems (γ = 0.25, 0.50, 0.75), both
PCUIs rank SMS-EMOA as the best algoritm. However, for
γ = 1.0, 1.5, 2.0, 6.0, both PCUIs mostly prefer NSGA-III and
MOEA/D that produce evently distributed solutions. Hence,
this provide certain empircal evidence that the combination
of indicators help to compensate the weaknesses of the in-
dividual indicators. SMS-EMOA produces well distributed

5This is an unpublished MOEA proposed by Falcón-Cardona and Coello
based on the design of the IGD+-MaOEA.

solutions on convex problems but not MOEA/D and NSGA-
III because the intersection of the convex weight vectors with
the Pareto optimal front are concentrated around the knee
of front. However, considering concave problems, MOEA/D
and NSGA-III evenly distribute solution, meanwhile SMS-
EMOA concentrate solutions around the knee. Regarding the
remaining PCUIs based on HV, IGD+ and ε+, they completely
prefer SMS-EMOA-like distributions. This can be explained
by the high correlation, described in Sect. V-A2, of both IGD+

and ε+ with HV.
Before discussing the preferences on the Mirror problems,

it is worth mentioning that MOEAs using a set of convex
weight vectors, have a bad performance on these MOPs [38].
In this case, the Pareto fronts are not highly correlated with
the simplex defined by the weight vectors, thus, some of them
do not intersect the PF∗. In contrast, MOEAs not using these
vectors, .e.g., MOVAP, SPEA2, IGD+-MaOEA, ∆p-MaOEA
and SMS-EMOA tend to have a better performance. Table VI
presents the best-ranked MOEAs for each QIs. Unlike Lamé
problems, HV does not always prefers SMS-EMOA in this
case. For γ = 1.0, HV rewards MOEA/D and ∆p-MaOEA.
Moreover, IGD+-MaOEA, that has a similar distribution to
that of SMS-EMOA, gets a better HV value in some problems.
Regarding R2, there is not a cmplete preference for MOEAs
using convex weight vectors. For γ = 0.75, 1.0 and 1.5, SMS-
EMOA-like distributions are rewarded. IGD+ and ε+ exhibit
a similar behavior to that of HV, although the latter differs a
little bit more. The behavior of WS(HV, R2) and ATCH(HV,
R2) is not as stable as in the Lamé problems, where they
always preferred well-distributed approximation sets. Now,
they mostly reward well-distributed fronts, but they sometimes
prefer Pareto fronts having numerous solutions along the
boundary, leaving the knee poorly populated. One more time,
PCUIs based on IGD+ and ε+ have a very similar behavior.
In fact, they differ slightly on linear problems. However, for
γ = 0.75, 1.0, 1.5, 2.0, they prefer well-distributed solutions
related to IGD+-MaOEA and ∆p-MaOEA. For the remaining
cases, there a tendency to select SMS-EMOA.

2) Correlation Analysis: In order to statistically analyze
the preference of the proposed PCUIs, we followed the
metholdology of Liefooghe and Derbel [23]. We employed
the two-tailed Kedall’s τ test, that is a nonparametric measure
of correlation employed with ordinal data. In this case the
ordinal data correspond to the ranking of MOEAs produced
by each of the considered QIs and PCUIs. A significance
level of 0.05 is used is the statistical tests. The underlying
idea is to observe the correlation of the base indicators (HV,
R2, IGD+ and ε+) and the proposed PCUIs of Table III on
the Lamé and Mirror test problems, varying the geometry of
the Pareto front and the number of objective functions. Each
QIs ranks the nine selected MOEAs, namely, SMS-EMOA,
MOMBI2, NSGA-II, NSGA-III, SPEA2, MOVAP, MOEA/D,
IGD+-MaOEA and ∆p-MaOEA. The correlation results are
shown using the heatmaps of Figures 3 and 4 for the Lamé
and Mirror problems, respetively. From these heatmaps, if
p ≥ 0.05, the white color is used to show that the result is
non-significant, i.e., there was not enough statistical evidence
to reject H0 : τ = 0. In the following, we focus on discussing
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TABLE V
MOST PREFERRED PARETO FRONT DISTRIBUTION BY EACH BASE INDICADOR AND PCUI FOR THE LAMÉ SUPERSPHERES PROBLEMS VARYING THE

GEOMETRY (γ VALUE) AND THE NUMBER OF OBJECTIVE FUNCTIONS.

γ Dim. HV R2 IGD+ ε+ WS(HV, R2) ATCH(HV, R2) WS(HV, IGD+ ) ATCH(HV, IGD+ ) WS(HV, ε+ ) ATCH(HV, ε+ )

0.25
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA MOMBI2 SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA MOMBI2 SMS-EMOA MOMBI2 NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

0.50
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA MOMBI2 SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA MOMBI2 MOMBI2 IGD+ -MaOEA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

0.75
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA MOEA/D MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA MOMBI2 MOMBI2 SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA MOMBI2 MOMBI2 SMS-EMOA SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

1.00
2 MOEA/D MOEA/D SMS-EMOA MOEA/D MOEA/D MOEA/D SMS-EMOA SMS-EMOA MOEA/D MOEA/D
3 SMS-EMOA NSGA-III MOMBI2 MOMBI2 NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA NSGA-III MOMBI2 SMS-EMOA SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

1.50
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA MOEA/D MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

2.00
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA MOEA/D MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

6.00
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

TABLE VI
MOST PREFERRED PARETO FRONT DISTRIBUTION BY EACH BASE INDICADOR AND PCUI FOR THE MIRROR SUPERSPHERES PROBLEMS VARYING THE

GEOMETRY (γ VALUE) AND THE NUMBER OF OBJECTIVE FUNCTIONS.

γ Dim. HV R2 IGD+ ε+ WS(HV, R2) ATCH(HV, R2) WS(HV, IGD+ ) ATCH(HV, IGD+ ) WS(HV, ε+ ) ATCH(HV, ε+ )

0.25
2 SMS-EMOA MOMBI2 SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA MOEA/D SMS-EMOA IGD+ -MaOEA MOEA/D MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

0.50
2 SMS-EMOA MOMBI2 SMS-EMOA SMS-EMOA MOMBI2 MOMBI2 SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 MOVAP MOEA/D MOVAP MOVAP SMS-EMOA MOVAP MOVAP MOVAP MOVAP MOVAP
4 IGD+ -MaOEA MOEA/D IGD+ -MaOEA MOEA/D IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA IGD+-MaOEA

0.75
2 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA NSGA-III NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 IGD+ -MaOEA SMS-EMOA MOVAP MOVAP IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA MOVAP MOVAP
4 IGD+ -MaOEA MOMBI2 IGD+ -MaOEA SPEA2 IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA IGD+ -MaOEA SPEA2 SPEA2

1.00
2 MOEA/D NSGA-III MOEA/D MOMBI2 NSGA-III NSGA-III MOEA/D MOEA/D MOMBI2 MOMBI2
3 ∆p-MaOEA SMS-EMOA ∆p -MaOEA ∆p -MaOEA MOVAP SMS-EMOA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA
4 ∆p-MaOEA SMS-EMOA ∆p -MaOEA ∆p -MaOEA SPEA2 ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA

1.50
2 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 ∆p-MaOEA SMS-EMOA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA
4 IGD+ -MaOEA SMS-EMOA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA

2.00
2 SMS-EMOA NSGA-III SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 ∆p-MaOEA MOEA/D ∆p -MaOEA SMS-EMOA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA ∆p -MaOEA
4 IGD+ -MaOEA MOVAP ∆p -MaOEA ∆p -MaOEA MOVAP ∆p -MaOEA ∆p -MaOEA IGD+ -MaOEA ∆p -MaOEA IGD+-MaOEA

6.00
2 SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
3 SMS-EMOA MOEA/D SMS-EMOA MOEA/D SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA
4 SMS-EMOA MOEA/D SMS-EMOA IGD+ -MaOEA MOVAP SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA SMS-EMOA

the correlation of the PCUIs.
Considering the relationship between WS(HV, R2) and

HV on the Lamé problems, there are some patterns. For 2
objective functions, these indicators are highly correlated for
concave problems. However, for convex fronts, the results of
the statistical test are not significant, thus, the ranks of WS(HV,
R2) and HV are independent. In the three-dimensional case,
the indicators tend to be correlated, although in some cases
τ ∈ (0.5, 0.75]. For 4 objective functions, the ranks are
independent for problems where γ = 2.0, 6.0. It is worth
emphasizing that for linear fronts, both indicators are highly
correlated. On the other hand, regarding WS(HV, R2) and R2
for 2 objectives, there is not statistical evidence that correlate
them when γ = 0.25, 0.50, 2.0, 6.0. This behavior is similar
for 3 objectives, whereas for 4 objectives, both indicators
are highly correlated. The statistical evidence indicates that
WS(HV, R2) and ATCH(HV, R2) are highly correlated in most
of the test problems. Regarding the Mirror problems and the
correlation between WS(HV, R2) and HV, we observe that they
are positively correlated in all three-dimensional problems.
However, for convex problems having 2 objective functions,
there is not evidence of correlation. This also happens for

concave problems in 4 dimensions. In case of the R2 indicator,
the correlation tends to be non-significant for highly convex
and concave problems.

For Lamé problems with γ = 0.25, 0.50, 0.75, 1.0, 1.5 in
all the considered number of objective functions, ATCH(HV,
R2) and HV are positively correlated. However, there is not
statistical evidence for highly concave problems when the
number of objective functions increases. In contrast, then
rankings of ATCH(HV, R2) and R2 are independent for convex
problems. Thus, the results with regard to HV and R2 are in
some way in conflict. Taking into account the Mirror problems,
ATCH(HV, R2) and HV are not as correlated as in the case
of Lamé problems. The main issue is related to problems
having a high grade of convexity and concavity. These pattern
is consistent with the correlation with the R2 for 2 and 4
objective functions.

Regarding the PCUIs based on HV, IGD+ and ε+, we
can distinguish a common pattern. The preferences of these
four PCUIs are highly correlated with those of the HV. From
Figures 3 and 4, we can see that IGD+ and ε+ are positively
correlated with HV. Hence, it is expected that the preferences
of the proposed PCUIs are aso closely related to HV. Using
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this information, we can explain why in Tables V and VI the
best-ranked MOEAs of the above mentioned PCUIs are very
similar to the most preferred MOEA by HV. Additionally, the
PCUIs based on the same weakly Pareto-compliant indicator
are also very correlated. Hence, this implies that the election
of the order-preserving utility functions are not changing the
preference regarding nondominated solutions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel methodology for the
combination of quality indicators in order to produce Pareto-
compliant combined indicators. To the authors’ best knowl-
edge, this is the first work that proposes such a combination
of QIs. For the combination, we need two or more QIs
where at least one them is Pareto-compliant and the others
are weakly-Pareto compliant. Moreover, an order-preserving
function is necessary to combine the indicators value such
that the new indicator is Pareto-compliant. We decided to use
order-preserving utility functions such as weighted sum and
augmented Tchebycheff to show the properties of these new
Pareto-Compliant Utility Indicators (PCUIs), combining the
hypervolume indicator (the only Pareto-compliant indicator so
far) with the indicators R2, IGD+ and ε+ that are weakly
Pareto-compliant. Our experimental results showed that the
PCUIs based on IGD+ and ε+ are highly correlated to the
hypervolume indicator, taking into account the preferences
of solutions. However, PCUIs based on HV and R2 are the
more interesting because the empirical analysis shows that
weaknesses of one indicator are cover by the advantages of
the other. As part of our future work, we aim to analyze the
properties of PCUIs based on HV and R2 in different Pareto
front geometries.
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[37] Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba
Torres. A Multi-Objective Evolutionary Algorithm based on Parallel
Coordinates. In 2016 Genetic and Evolutionary Computation Conference
(GECCO’2016), pages 565–572, Denver, Colorado, USA, 20-24 July
2016. ACM Press. ISBN 978-1-4503-4206-3.

[38] Hisao Ishibuchi, Yu Setoguchi, Hiroyuki Masuda, and Yusuke No-
jima. Performance of Decomposition-Based Many-Objective Algorithms
Strongly Depends on Pareto Front Shapes. IEEE Transactions on
Evolutionary Computation, 21(2):169–190, April 2017.


