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Abstract—Recently a Quantum Fuzzy Inference Engine (QFIE)
that achieves an exponential advantage in computing fuzzy rules
with respect to the classical counterpart has been proposed. The
main goal of such a quantum engine is to pave the way for the
implementation of fuzzy rule-based systems in complex environ-
ments where the number of fuzzy rules to compute is impractical
for classical fuzzy systems. However, also due to the technological
limitation of current Noisy Intermediate Scale Quantum (NISQ)
devices, until now the quantum engine has been tested only
in noiseless simulations and simplified environments. This work
aims to overcome both of these limitations by using QFIE for the
very first time to control real systems such as those related to
particle accelerator facilities at the European Organization for
Nuclear Research (CERN), as well as executing QFIE on real
quantum hardware. As shown by a set of experiments carried
out on the T4 target station at the CERN SPS fixed target physics
beam line and on the Advanced Proton Driven Plasma Wakefield
Acceleration Experiment (AWAKE), QFIE is able to control this
kind of environment efficiently.

Index Terms—Quantum computing, fuzzy control systems,
Particle Accelerators.

I. INTRODUCTION

Fuzzy sets and logic theory introduced by Lofti Zadeh [1],
[2] has the capability of model classes of objects that do not
have precisely defined criteria of membership, in a way to
mimic human thinking on computers. Starting from Zadeh’s
theory Fuzzy Rule-Based Systems (FRBSs) have been devel-
oped and they have found a widespread set of applications in
the field of automatic control and decision making [3], [4]. The
reason of this success can be explained by the fact that expert
knowledge is easily introduced in these systems by means of
fuzzy rules. Despite their success, FRBSs suffer from the fuzzy
rule explosion problem: the number of rules in a FRBS grows
exponentially with the number of variables that makes up the
system. This issue strongly limits the possibility of controlling
environments characterized by an high number of variables
by means of such systems. Very recently, to potentially over-
come this important limitation of FRBSs, the new quantum
computing paradigm has been exploited to implement a new

generation of fuzzy inference engines. The first quantum fuzzy
inference engine (QFIE) has been developed in [5]: thanks to
the massive parallelism provided by quantum phenomena such
as superposition and entanglement, QFIE is able to reach an
exponential advantage in computing fuzzy rules with respect
to the classical counterpart. However, in the aforementioned
research, the authors focused on the theoretical aspects of
this promising algorithm. On the other hand, also due to the
current era of quantum computers characterized by a high
level of noise and a small number of qubits available for the
computation [6], until now QFIE has been tested by means
of simulations just for the control of very easy environments
such as the one related to an inverse pendulum system.

This work aims to validate experimentally the potentiality
of QFIE, by using it for the control of real facilities such
as those related to the particle accelerators at the European
Organization for Nuclear Research (CERN). Moreover, some
of the experimental tests carried out in this research aim to
use QFIE for the very first time by means of a real quantum
device from the IBM Q Family.

While the results achieved by this research experimentally
prove the capabilities of this new quantum fuzzy inference
engine, they also demonstrate how FRBSs can help particle
physics experiments carried out at CERN. Indeed, CERN
maintains a dense and diverse physics program with numerous
experiments requiring more and more challenging control
capability of particle accelerators. Whereas for many beam
control problems, physics models are used at the CERN
accelerators, various systems are still tuned manually due to
the lack of models or beam instrumentation. Recently, sample-
efficient control algorithms, such as reinforcement learning
(RL), have been introduced for some of these cases [7], [8].
Sample efficiency is essential for any optimization algorithm in
the context of accelerator operation to minimize the impact on
beam time available for the physics experiments. This kind of
sample efficiency is shown experimentally in this research also
for QFIE. Therefore, this work represents outstanding proof



of the FRBSs approach as an alternative to the current RL
scenario.

In detail, the experimentation carried out in this work fo-
cuses on two control problems related to two CERN facilities:
the T4 target station at the CERN Super Proton Synchrotron
(SPS) fixed target physics beam line and the much more com-
plex Advanced Proton Driven Plasma Wakefield Acceleration
Experiment (AWAKE).

In the former case study, the control problem was 1-
dimensional, and the size of the quantum circuits implement-
ing QFIE has enabled its execution on the IBMQ Montreal
hardware. On the other hand, the AWAKE facility consists of
a complex 10-dimensional control problem, and current NISQ
devices are not ready to handle the resulting QFIE circuits.
However, in this case, the simulated quantum circuits were
tested on real data as an on-line controller of the beam line.

The remaining of the paper is structured as follows: in
section II an analysis of the literature about the integration
of fuzzy logic and quantum computing is carried out; section
III summarizes the basic concepts related to the quantum
computing and the main aspects of QFIE; section IV and
section IV-B report the experimentation performed for the
simulated T4 target station and AWAKE environments respec-
tively; section IV-C shows the experimental test carried out
on the real AWAKE facility. Finally, section V concludes the
paper.

II. RELATED WORKS

Quantum Computing is becoming more and more a com-
putational paradigm useful to develop a new generation of
powerful and efficient computational intelligence algorithms:
for instance, huge efforts have been done in the context of
quantum neural networks [9], [10], as well as in quantum
evolutionary computing [11], [12]. In both areas, these works
show a potential advantage in using this new quantum compu-
tational intelligence framework over the classical counterpart.
On the other hand, quantum fuzzy logic is a very recent and
unexplored topic. Recently, several approaches exploiting the
affinity of quantum mechanics and fuzzy sets theory have been
presented, trying to interact to each other’s advantage [13]–
[16]. More generally, two lines of research have emerged in re-
cent years: on the one hand, fuzzy sets theory has been used for
simulating and modeling physical quantum systems [17], [18];
on the other hand, quantum computing approaches have been
investigated to improve the performance of conventional fuzzy
systems. Our interests focus on this second area, which is here-
after deeply analyzed. One of the first application of quantum
computing to improve the computational performance of fuzzy
systems is presented by Rigatos et al. in [19]. In this work,
some operations performed in specific fuzzy inference engines
are replaced by quantum operations. Although the theoretical
results presented in [19] were very promising, at the time when
that research was carried out no suitable quantum devices or
simulators were available to allow experimental validation on
the field. Successively, different researches focused on the
quantum implementation of fuzzy logic operators. Some of

them focused on the usage of a quantum circuital paradigm for
implementing these operators [20], [21], while others exploited
different quantum computational paradigms such as quantum
annealing [22], [23]. Although all of the above research efforts
show how quantum operations can be useful for performing
basic logic operations between fuzzy sets, none of them
implements an efficient quantum algorithm for executing fuzzy
inference engines on quantum computers. An embryonic work
in this direction is presented in [24], where Grover’s algorithm
was used to implement a fuzzy system based on a lookup table.
Although this paper represents the first attempt to use a well-
known quantum algorithm to implement fuzzy systems, its use
is very limited since the input-output relationships present in
the lookup must be generated using classical computation. This
limitation does not allow obtaining a computational advantage
from the quantum implementation of FRBSs. Finally, such
a computational advantage was proven very recently in [5].
A deep description of the algorithm proposed in this paper
is carried out in section III-B. However, the main goal of
the aforementioned work was the theoretical proposal of an
innovative QFIE, which has been tested in very easy case
studies and just by noiseless simulations of the quantum
circuits implementing the algorithm. According to this analysis
of the state of the art, this work represents the very first
attempt to use the quantum fuzzy inference engine presented
in [5] for the control of real and complex environments,
such as those related to particle accelerators at the CERN
facilities. Moreover, the proposed work shows also the first
real execution of the quantum fuzzy inference engines on real
quantum devices from the IBM Q family.

III. BASIC CONCEPTS

This section aims to introduce the basic concepts of quan-
tum computing, highlighting also the hardware limitations of
the current quantum devices. Successively, a brief description
of the QFIE proposed in [5] is carried out. Readers familiar
with the basic concepts of quantum computing can therefore
skip to section III-B.

A. Quantum Computing

Quantum computing manipulates and stores information by
using qubits, the basic information unit of this innovative
computational paradigm. The main peculiarity of qubits is that,
unlike the classical bits, they can live in a superposition of
states. Formally, a qubit is described by a vector of an Hilbert
space H: according to the bra-ket notation, such a vector is
expressed as follows:

|ψ⟩ = α |0⟩+ β |1⟩ (1)

where the set {|0⟩ , |1⟩} forms the basis state of H, while α
and β are complex coefficients. When a quantum state is mea-
sured it collapses in one of its basis states with a probability
equal to the squared modulus of the related coefficient. The
result of the measurement operation is therefore a classical bit
0 or 1 obtained with a probability |α|2 or |β|2 respectively.
One of the most powerful peculiarities of quantum computers



is the fact that when more qubits are used simultaneously,
the size of the Hilbert space in which the quantum state lives
increases exponentially with the number of qubits. This means
that by considering n qubits, the quantum state describing the
system is expressed as follows:

|ψ⟩ =
2n−1∑
i=0

αi |i⟩ (2)

where i denotes the integer representation of the n-
dimensional bit string, and the coefficients αi have the same
meaning as the one-dimensional case described above.

Quantum states can be manipulated by quantum gates as
well as classical bits can be manipulated by means of logical
gates [25]. By definition quantum gates are represented by
unitary matrices that act on a state as follows :

U |ψ⟩ = U

2n−1∑
i=0

αi |i⟩ (3)

A more in deep description of these gates is out of the scope
of this paper but can be found in [25]. Overall, a quantum
algorithm is a collection of quantum gates acting on several
qubits. In the end, the resulting quantum circuit is measured
and usually, this procedure is repeated several times to esteem
the distribution of probability encoded in the output quantum
state.

For the past few years, various quantum hardware has been
made available via the cloud by several major industries.
However, these primordial quantum devices are denoted as
Noisy Intermediate Scale Quantum (NISQ) computers [6]. The
label refers to the limited amount of qubits of these devices
and also to the high level of noise that occurs during the com-
putation of quantum circuits. Recently, a lot of improvements
have been done in the development of quantum hardware: for
instance, IBM has just presented the first superconductive chip
composed of more than 400 qubits1. However, this number of
qubits is still too low for implementing directly on hardware
error correction codes. On the other hand, attempts to simplify
quantum circuits to be executed on actual NISQ devices
have been presented. Crucial for this work is the D-NISQ
reference model introduced in [26]. This architecture offers
a reference model for distributing quantum computation in
smaller quantum circuits that can be then executed on different
quantum processors. The integration of the different outputs is
in the end classically performed by means of the information
fusion layer, which returns the output of the original problem
to solve. As shown in section IV-B such a model is used in
this work for enabling the development of a quantum fuzzy
control system able to control a 10-dimensional environment
such as the one of the AWAKE experiment at the CERN.

B. A Quantum Fuzzy Inference Engine

A fuzzy rule-based system (FRBS) is a rule-based system
where fuzzy sets and fuzzy logic are used for modeling the

1https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-
Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
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Fig. 1. Architecture of a fuzzy rule-based system

relationships existing between its variables [27]. The general
workflow of a FRBS is shown in Fig. 1. The knowledge base
of the system is composed of a database and a rule-base. The
former stores knowledge about the problem at hand in terms of
fuzzy variables: a fuzzy variable X is composed of a set of m
linguistic terms X = {T1, T2, . . . , Tm}, where each linguistic
term Ti (with i = 1, 2, . . . ,m) is described by a fuzzy set.
On the other hand, a fuzzy rule-base is composed of a set
of fuzzy if-then rules of the following form: IF (X1 is Ts1) •
(X2 is Ts2)• . . .• (Xn is Tsn) THEN Y is TsY , where Tsi is
the fuzzy set related to the s-th linguistic term defined in the
universe of discourse of Xi and • is a general logic connector,
such as and and or. These are implemented by means of t-
norm and s-norm operators, respectively [2]. In general, the
fuzzy proposition before the THEN keyword is denoted as
antecedent preposition, while the following part is denoted as
consequent preposition of the rule. Considering this, the action
of a MISO (Multiple-Input Single-Output) FRBS composed of
m input variables, can be summarized in the following steps:

1) The m input crisp data are fuzzified by means of the
fuzzification interface: for each input Xi the fuzzifica-
tion interface computes the membership degrees αTj

Xi
for

all the Tj fuzzy sets defined in Xi.
2) The fuzzy inference engine (FIE) uses database and

rule base to perform a nonlinear mapping from input
and output fuzzy variables, through four sequential steps
[28]:

1) the evaluation of each fuzzy proposition belonging
to the antecedent part of each rule by considering
the system inputs;

2) the computation of the degree of fulfillment of each
rule obtained by aggregating the fuzzy propositions
of the antecedent part;

3) the computation of the fuzzy output of each rule
obtained by applying the implication operator;

4) the computation of the overall fuzzy output obtained
by accumulating the fuzzy outputs of individual
fuzzy rules.

3) The defuzzification interface converts the output fuzzy
variable to a crisp value.

The QFIE proposed in [5] replaces the classical FIE of the
above architecture. It is based on a formulation of the fuzzy
rule set as a Boolean oracle and on an encoding procedure of

https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two


fuzzified values in quantum states. These features are hereafter
described.

1) Oracle-based FRBS: For sake of simplicity, let us con-
sider the design of the oracle-based FRBS of a MISO fuzzy
system S with n input fuzzy variables X0, X1, . . . , Xn−1 and
one output fuzzy variable Y . Each input variable Xj is defined
by using mj linguistic terms: Xj = {T j

0 , T
j
1 , . . . , T

j
mj−1},

with j = 0, 1, . . . , n− 1. The output variable Y is defined by
using mY linguistic terms: Y = {TY

1 , T
Y
2 , . . . , T

Y
mY

}. The
oracle-based design of an inference fuzzy system requires
that both input and output linguistic terms are encoded by
binary strings. Then, for input variables, let {Bj

I}
n−1
j=0 be a

family of sets, whose j-th component is defined as follows:
Bj

I = {bji |i = 0, 1, . . . ,mj − 1}, where bji is the binary
encoding of the number i, with i = 0, 1, . . . ,mj−1, computed
by using the conventional decimal to binary conversion, and
such that η̄j = |bji | = ⌈log2(mj)⌉ is the number of bits
used to encode above strings. In this way, the j-th element of
{Bj

I}
n−1
j=0 contains the binary label bji of the linguistic terms

T j
i related to the i-th input variable, where i = 0, 1, . . . , n−1.

For the output variable, let BO be a set defined as follows:
BO = {ci|i = 1, 2, . . . ,mY }, where ci is the binary encoding
of the number i, with i = 1, 2, . . . ,mY , computed by using a
one-hot encoding: ci is a mY -bit binary string consisting of all
0’s except for a 1 in the i-th position from left, and such that
|ci| = mY is the number of bits used to encode above strings.
Thus, BO contains the binary representation ci of the linguistic
term TY

i related the output variable, where i = 1, 2, . . . ,mY .
Now, let AS and CS be two new sets defined as follows:

AS =

n∏
j=0

Bj
I ; CS = BO ∪ {c0} (4)

where AS is a Cartesian product that contains the binary
encoding of all possible antecedents that can be defined
with the input variables {Xj}n−1

j=0 ; CS contains the binary
encoding of all possible consequent parts that can be defined
with the output variable Y ; and c0 = {0}mY is a mY -bit
string containing all 0’s. Thus, the function f : AS → CS
is a Boolean oracle that maps the antecedent parts to the
consequent parts to compose fuzzy rules. For a given a ∈ AS ,
f returns a binary string other than {0}mY if a is a suitable
antecedent part present for the system S , {0}mY otherwise.

2) Encoding Procedure:: QFIE requires that the data on
which a FIE operates, i.e., fuzzified values, be modeled
through quantum states. This goal is achieved by using an
amplitude encoding procedure.

For sake of simplicity, let us suppose that for each input
variable the terms {T j

0 , T
j
1 , . . . , T

j
mj−1} are a fuzzy partition,

i.e. given a crisp value xj of Xj then
∑mj−1

i=0 αj
i = 1 ∀j ∈

[0, n− 1]. Under this condition, a quantum register composed
of ηj = ⌈log2(|Xj |)⌉ qubits for each input variable can be
initialized as:

|ψj⟩ =
mj−1∑
i=0

√
αj
i

∣∣∣bji〉+

2ηj−1∑
i=mj

0 ·
∣∣∣bji〉 (5)

where the set {bji}
2ηj−1
j=mj

is composed of the Boolean strings
in excess of Bj

I . If Xj is not a fuzzy partition, a dummy fuzzy
set can be used for ensuring the normalization in Eq. (5). In
order to define a quantum state that takes into account all n
fuzzy variables involved, the tensor product of the individual
states {|ψj⟩}n−1

j=0 is computed:

|ψ0, ψ1, . . . ψn−1⟩ =

=

m0−1∑
j=0

. . .

mn−1−1∑
l=0

√
α0
j · . . . · α

n−1
l

∣∣b0j , . . . , bn−1
l

〉
=

=
∑
a∈As

√
Fa |a⟩

(6)

where Fa is the fire strength of the antecedent a computed
with the product T-norm [29]. This quantum state has an
important property: its basis states correspond to all possible
antecedent parts of fuzzy rules that can be generated with
the variables X0, X1, . . . , Xn−1. Consequently, the squared
amplitude of each basis state represents the degree of ful-
fillment of the related antecedent part. As for the output
fuzzy variable Y , it is embodied in a quantum state |ψY ⟩
composed of mY qubits, each of which is initialized to |0⟩:
|ψY ⟩ = |00, 01, . . . , 0mY −1⟩ = |0̄⟩. Let Of be the unitary
gate implementing the oracle f : AS → CS . Then, Of acts as
follows:

|ψ′
Y ⟩ = Of |ψ0, ψ1, . . . , ψn−1⟩ |0̄⟩ =

=

mY∑
i=1

∑
a∈Ai

S

(√
Fa |a⟩ |ci⟩

)
+

∑
a∈A0

S

(√
Fa |a⟩ |0̄⟩

)
(7)

The state returned by the oracle application is then used by
the inference engine to compute the values Pci , corresponding
to the probability of measuring the output quantum state as
|ci⟩, to cut the membership function related to the output
linguistic term TY

i , with i = 1, 2, ...,mY :

Pci = ⟨ψ′
Y |M†

ciMci |ψ′
Y ⟩ =

=
∑
a∈Ai

S

∑
b∈Ai

S

(√
Fa ⟨a| ⟨ci|

)
·
(√

Fb |b⟩ |ci⟩
)
=

=
∑
a∈Ai

S

∑
b∈Ai

S

δa,b
√
Fa

√
Fb ⟨a|b⟩ =

∑
a∈Ai

S

Fa

(8)

Where Mci represents the projector operator on the basis
state |ci⟩. At this point, the final fuzzy set is obtained by the
inference operator which applies two sequential operations,
namely implication and aggregation: starting from the values
{Pci}

mY
i=1, the implication operator computes the output fuzzy

set µY
i (x) related to the i-th linguistic term of the output

variable Y : µY
i (x) = min(Pci , µTY

i
(x)) ∀x ∈ Ui where Ui is

the universe of the discourse of the fuzzy set {(x, µTY
i
(x))|x ∈

Ui} that describes the linguistic term TY
i of the output

variable Y , with i = 1, 2, . . . ,mY . The aggregation operation
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Fig. 2. Quantum circuit implementing QFIE.

combines, the fuzzy membership functions {µY
i (x)}

mY
i=1 to

compute the output fuzzy set SY = {(x, µY (x))|x ∈ ∪mY
i=1Ui}

as follows: µY (x) = maxi=1,2,...,mY
(µY

i (x)) ∀x ∈
⋃mY

i=1 Ui.
Then, the crisp output value can be obtained by applying the
preferred defuzzification method on the fuzzy set SY , such
as the CoG approach reported in [30]. Figure 2 represents a
schematic view of the quantum circuit implementing QFIE.

IV. EXPERIMENTAL RESULTS

This work aims to solve some control problems at the
CERN accelerator complex. The environments studied are
two existing CERN beam lines representing control problems
of different degrees of complexity. The former beam line
describes a target steering task for a proton beam with a single
control variable. In contrast, the second one represents the
AWAKE electron beam line featuring ten control parameters.
For both tasks, accurate simulations exist, which will be used
mostly to develop and test the implementation of QFIE for
their control. The environments are built on top of the OpenAI
GYM template [31], while QFIE is implemented by using the
Python Package available on GitHub2. Finally, section IV-C
shows the performance of the QFIE based FRBS on the real
AWAKE accelerator.

A. QFIE for the Target Steering Environment Control

This section aims at showing the application of QFIE in
controlling the one-dimensional beam target steering envi-
ronment based on the beam optics of the TT24-T4 transfer
line at CERN [32]. This line is about 170 m long and
transports protons with a momentum of 400GeV/c from the
Super Proton Synchrotron (SPS) to some of the fixed-target
physics experiments installed in the CERN North Area. TT24
is equipped with several dipole and quadrupole magnets to
steer and focus the beam, various beam position monitors
(BPM), and the actual target, which is placed at the end of the
line. The objective of the task is to optimize the number of
particles hitting the target by tuning the first dipole magnet in
the line to maximize the event rates in the particle detectors.
The left-hand side of Fig. 3 shows the relevant elements of
TT24 together with horizontal beam trajectories obtained from
tracking simulations for three different settings of the main
bending dipole (orange). Depending on the dipole deflection

2https://github.com/Quasar-UniNA/QFIE

angle, the particles hit the target (grey, hatched) at different
horizontal positions, as illustrated by the zoomed view on the
right-hand side of the figure. There are focusing (purple) and
defocusing (olive) quadrupoles along the beam line to keep
the beam particles confined.

Overall, the QFIE-based controller implemented aims to
deflect the beam via the magnetic dipole according to two
input variables such as the position reading of one of the BPMs
installed in the beam line (cyan) Xbmp and the desired target
position XT . The allowed range of deflection angles Y is [-
140, 140] µrad.

Two scenarios have been considered: in the first configu-
ration (C1) XT was any value in the range [−1.5, 1.5] mm,
while in the second configuration (C2), XT was set to zero,
and therefore Xbpm was the only input variable of the system.
This simplification of the environment enables the construction
of smaller quantum circuits for QFIE that can be reliably
executed on real quantum hardware. Finally, to assess how
well the beam is hitting the target, the following reward
function is considered:

R = −(1− I) (9)

where I represents the intensity of the Gaussian beam in the
range XT ± 3σ, where σ is the beam size following from a
fixed emittance of 11.8 nm. The beam is hitting the perfect
target position when R = 0.

The fuzzy partitions and the rule base used by QFIE in
controlling C1 and C2 are reported in Fig. 4 and Fig. 9
respectively. For C1, five linguistic terms were considered
for each variable: Negative (N), Medium Negative (MN),
Zero (Z), Medium Positive (MP), and Positive (P). As a
consequence, the number of fuzzy rules having as antecedent
an and connection of two linguistic terms related to the
different input variables is 25. For C2, three linguistic terms
were considered for the input and the output variable: Negative
(N), Zero (Z), and Positive (P). This leads to a set of 3 fuzzy
rules. The limited number of fuzzy rules in C2 enables the
execution of QFIE also on real NISQ devices, while their
high level of noise forces the control of C1 via noiseless
simulations of QFIE. In detail, the transpiled3 quantum circuit
implementing QFIE for C1 control has a depth of 3182 with
1554 CNOT gates, while the transpiled quantum circuit of
QFIE for C2 control has an overall depth of 42 and a number
of CNOTs equal to 20.

For C1 evaluation 20 different initial beam positions were
considered, while the target XT was randomly selected in the
range [−1.5, 1.5]mm. Both Xbpm and Y have been normalized
in the simulations in the range [-1, 1]. For sake of space, the
reported results refer just to a particular target position, but
the performances are very similar for all the different target
positions tested. For C2 evaluation, due to the limitation in
time for the availability of IBM quantum devices, just 10

3Transpilation is the process by which a quantum circuit is decomposed into
basic gates for be executed on a specific quantum hardware. More details can
be found in [33].

https://github.com/Quasar-UniNA/QFIE


Fig. 3. One-dimensional beam target steering task at the CERN TT24-T4 beam line. Left: Horizontal beam trajectories obtained from tracking simulations
are shown for three different settings of the main deflecting dipole (orange). Right: Zoomed view on the target (grey, hatched) region showing the horizontal
position of impact of the beam for the three settings of the main dipole [8].

(a) (b)

Fig. 4. Membership functions for C1 (a) and C2 (b)

different initial beam positions were considered. In particular,
the experiments have been carried out on the IBMQ Montreal
device. The results obtained for both C1 and C2 are reported
in Fig. 5(a) and 5(b), respectively. In detail, the upper plots
represent the number of controller actions (steps) required to
achieve the target position. The second plot reports the value
of the reward function R at the beginning of the episode (red
line) and at the end of it (green line). The two boxes on the
bottom of the figure, represent the dipole angle in mrad (Y )
and the beam position at the BPM in mm respectively. The
dashed lines represent the ideal output of the system, while
the red and green lines show the initial and final values. For
configuration C2, the ideal output for both these plots is 0,
where the target was set. It can be seen that QFIE is able
to control the environment in all the episodes and for both
configurations. The absence of noise during the simulation for

C1 enables the control of the beam with two steps at worst.
On the other hand, the noise in computing the QFIE action
that occurs in C2 and the lower granularity of the input fuzzy
partition, make more steps required for achieving the optimal
solution. Overall, these results prove the suitability of QFIE
in controlling this kind of environment, both by means of
simulations of the quantum circuits and by means of execution
on real quantum hardware.

B. QFIE for the Electron Beam Line Control

The Advanced Wakefield Experiment (AWAKE) at CERN
uses high intensity 400 GeV proton bunches from the Super
Proton Synchrotron (SPS) as a plasma wakefield driver. Elec-
tron bunches are simultaneously steered into the plasma cell
to be accelerated by the proton induced wakefields. Electron
energies up to 2GeV have been demonstrated over a plasma



(a) (b)

Fig. 5. Experimental results for the target steering environment control in C1 (a) and C2 (b)

(a) (b)

Fig. 6. Rule set for C1 (a) and C2 (b). The conjunction of the elements of
the first row and column represents the antecedent part of a fuzzy rule having
as consequent the corresponding matrix element. For instance, the first rule
in C1 corresponds to the sentence If Xbpm is Negative and XT is Negative
then the correction angle is Zero.

cell of 10m length corresponding to an electric field gradient
of 200MV/m [34]. The ultimate goal for AWAKE is to reach
a field gradient of 1GV/m. These numbers are to be compared
to conventional accelerating structures using radio-frequency
(rf) cavities in the X-band regime, which are currently limited
to accelerating field gradients of about 150 MV/m [35].

The AWAKE electron source and beam line are particularly
interesting for algorithm preparation and testing due to the
high repetition rate and insignificant damage potential in case
of losing the beam at accelerator components. The AWAKE
electrons are generated in a 5 MV photocathode rf gun,
accelerated to 18 MeV and then transported through a beam
line of 12m to the AWAKE plasma cell. The trajectory is
controlled with 10 horizontal and 10 vertical steering dipoles
according to the measurements of 10 BPMs, see Fig. 8. The
BPM electronic read-out is at 10 Hz and acquisition through
the CERN middleware at 1 Hz.

The goal was to develop a QFIE based controller able to
correct the horizontal trajectory with similar accuracy as the
response matrix-based singular value decomposition (SVD)

algorithm that has been traditionally used [36].
The input state of the controller is formalized as a ten-

dimensional vector of horizontal beam position measured with
respect to the reference trajectory. Accordingly, the controller
action is a ten-dimensional vector of corrector dipole magnet
kick angles within a range of ±300µrad. To evaluate the
performance of the controller, it is used a reward function
consisting of the negative root-mean-squared (rms) of the
measured beam trajectory with respect to the reference at all
the BPMs.

Developing a single QFIE controlling simultaneously all
the corrector dipole magnets along the AWAKE trajectory
would reflect in a quantum circuit too big for being classically
simulated or executed on a current NISQ device. Therefore
to solve the control problem an approach based on the D-
NISQ reference model proposed in [26] has been exploited:
the original 10-dimensional problem was divided into ten 1-
dimensional control problems, where each corrector dipole
magnet Ki with i ∈ [1, 10] is controlled by a QFIE, QFIEi

with i ∈ [1, 10]. Each QFIEi ∀i ∈ [2, 10] acts considering
two input variables xi and dki, where the former refers to
the distance from the ideal position of the beam registered
by the corresponding BPMi, while the latter refers to the
sum of the deviation carried out by the magnets that are
placed previously to the i-th magnet on the AWAKE beam
line. Formally, denoting with ŷi the corrector dipole magnet
kick angles computed by QFIEi, the dkm input variable for
QFIEm is defined as follows:

dkm =

m−1∑
i=1

ŷi. (10)

The action of QFIE1 depends just from the position of
the particle beam at the first beam position monitor along the
trajectory. In detail, dki is defined in an interval [-2,2] ∀i ∈
[2, 10]; xi is defined in an interval [-1,1] ∀i ∈ [1, 10]; the
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Fig. 7. Fuzzy Partitions for QFIE10 Input 7(a), 7(b) and Output 7(c) variables.

Fig. 8. Representation of the CERN AWAKE beam line with 10 trajectory
correctors and 10 beam position readings along the line.

output corrector dipole magnet kick angles yi are defined in
the normalized interval [-1,1] ∀i ∈ [1, 10] .

The fuzzy partitions used for the variables of each
QFIEi are the same. In particular, Fig. 7 shows them for
QFIE10. Moreover, Fig. 9(a) shows the fuzzy rule base for
QFIEi ∀i ∈ [2, 10], while Fig. 9(b) shows the fuzzy rule
base for QFIE1.

(a) (b)

Fig. 9. Rule set for QFIEi ∀i ∈ [2, 10] (a) and QFIE1 (b). The
conjunction of the elements of the first row and column represents the
antecedent part of a fuzzy rule having as consequent the corresponding matrix
element. For instance, the first rule in QFIEi corresponds to the sentence
If dki is Very Negative and xi is Very Negative then the correction angle is
Very Positive.

To minimize the number of interactions of the whole con-

troller with the environment a bias factor b has been multiplied
by the ten QFIEs output. Formally, denoting with ŷi the
output computed by QFIEi, the final corrector dipole magnet
kick angle yi used to modify the environment state is obtained
as follows:

yi =


ŷi · b if ŷi · b ∈ [−1, 1]

1 if ŷi · b > 1

−1 if ŷi · b < −1

(11)

In our experimentation, b has been set to 10.
Fig. 10 reports the experimental results obtained by sim-

ulating the AWAKE environment controlled by QFIEs. The
simulations stop when the reward objective reaches an rms
value of 2mm. As shown by the plots, considering 50 different
episodes, where the initial condition of the beam is far away
from the threshold rms value, the quantum fuzzy control
system is able to align the particle beam to the ideal trajectory
in 100% of the episodes. Moreover, in all the episodes the
desired trajectory is obtained at the worst by means of two
interactions of the controllers with the environment.

Fig. 10. Experimental results on the simulated AWAKE environment.



C. Online Tests on Real AWAKE Environment

The QFIE based FRBS was also evaluated in the real
AWAKE environment to test sim-to-real transfer. The same
configuration of QFIE considered for the simulated environ-
ment has been exploited. Fig. 11 shows the histograms report-
ing the obtained results: QFIE has been tested by considering
four different levels of reward objective threshold value, -2mm
(Fig. 11(a)), -1.6mm (Fig. 11(b)), -1.2mm (Fig. 11(c)) and -
0.8mm (Fig. 11(d)). A lower value of rms reflects in a more
precise control of the particle beam. For each threshold value,
20 independent episodes have been collected. Histograms in
Fig. 11 report respectively the distribution of the number of
interactions environment-control required to reach the desired
rms value, the distribution of the 20 initial state reward values
and the distribution of the 20 final state reward values. As
highlighted by the plots, the QFIE based controller is able
to solve both the tasks in the simulated and real AWAKE
environment. Indeed the objective reward value is reached in
the 100% of the episodes considered. The number of steps
required for achieve such an impressive result is in line with
the simulated environment, except for an outlier in the rms
threshold equals to -0.8mm situation.

V. CONCLUSION

In this work, the innovative QFIE introduced in [5] has
been experimentally tested for the very first time for the
implementation of FRBSs useful to control real-world environ-
ments, such as those related to particle physics accelerators at
CERN facilities. The main result obtained from this research
is twofold: on the one hand, it has been shown that QFIE is
able to control these complex environments both by means of
simulations and executions on real hardware of the quantum
circuits implementing the algorithm; on the other hand, as
shown on the test carried out on the real AWAKE beam line,
it has been proved that FRBSs could be a valid tool for the
control of particle accelerators for the physics experiments at
CERN.

In detail, the research was carried out on two successive
scenarios, two existing CERN beam lines representing control
problems of different degrees of complexity. In the first
scenario, the QFIE controller implemented aims to deflect the
beam via the magnetic dipole in an environment based on
the TT24-T4 transfer line at CERN: in this simpler context,
the whole algorithm has been executed on real IBM Quantum
computers, proving the feasibility of QFIE in controlling this
kind of environment on real quantum devices. The second
scenario consists of the AWAKE use case, where the 10-
dimensional environment is much more complex and current
NISQ devices are not ready to handle the resulting QFIE
circuits. However, in this case, the simulated quantum circuits
were tested on real data as an online controller of the beam
line. This result proves for the very first time the capability of
a FRBS to control a real particle accelerator.

In the future QFIE based FRBS will be developed and
tested for more complex experiment and environments, where
no analytical solutions are available to control the systems.

Moreover, further tests on real quantum hardware execution
of quantum circuits implementing QFIE will be carried out.
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