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Abstract—Understanding neural network uncertainty is es-
sential to comprehend model behavior, ensure safe deployment,
and intervene appropriately. However, existing uncertainty values
only describe the model’s decision, ignoring its consideration
of other choices and masking the reason for the uncertainty.
By leveraging human knowledge about related decisions, we
expand single uncertainty values into a hierarchy of concepts,
creating an uncertainty fingerprint. Unlike an uncertainty value,
an uncertainty fingerprint describes the model’s confidence in
every possible decision, distinguishing how the model proceeded
from a broad idea to its precise prediction. Using hierarchical
entropy, we represent and compare fingerprints based on the
model’s decision-making process to uncover patterns of uncer-
tainty. Doing so facilitates important model analysis tasks in
image classification settings, including categorizing types of model
uncertainty, identifying common failure modes, and reasoning
about a model’s decision.

Index Terms—Machine learning, Uncertainty, Complex hier-
archies, Knowledge modeling

I. INTRODUCTION

As deep neural networks are deployed in high-stakes appli-
cations, like cancer diagnoses [1], it is increasingly important
to understand when and why networks are uncertain. Currently,
uncertainty estimation algorithms, such as Bayesian Neural
Networks [2], ensembling [3], dropout [4], and model calibra-
tion [5], approximate how certain a model is in its decisions
and present this information as a single confidence value.
These confidence values provide important context about the
model’s decision-making process, for instance, uncovering
when a correct prediction was actually a random guess.
Confidence values are widely used to analyze model behavior
and increase human trust and acceptance of model-based
recommendation systems [6].

While uncertainty estimation expands human insight into
model decision-making, using a single quantitative value
masks the reasoning behind the uncertainty. Quantitative val-
ues provide the model’s probabilistic confidence in its decision
but do not describe the reason for its confidence. For instance,
in an image classification setting, a model might express that
it is 20% confident in its decision. However, humans have
a rich vocabulary to describe their confusion and might say
they are uncertain because there are multiple possible objects
or the image is corrupted. Understanding the reason for the
uncertainty is critical to make an appropriate intervention, like
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modifying the modeling task to handle multi-object images or
addressing data quality issues.

The second limitation of confidence values is that they
ignore relationships between the model’s confidence in its de-
cision and other possible decisions. While uncertainty estima-
tion procedures can estimate the model’s confidence for every
possible decision (e.g., every output class), the relationships
between those decisions are ignored. However, understanding
other options the model was considering and their relationship
to its ultimate decision are crucial to understanding the model’s
reasoning process. For example, suppose our model is only
20% confident that the image is a t rout. Then, it is essential
to know whether the other 80% is distributed across other fish
species versus unrelated classes. Depending on the task, we
may be comfortable if our model can not differentiate fine-
grained species of fish but concerned if the model can not
distinguish a trout from a tractor.

To operationalize uncertainty values and overcome their
limitations, we utilize the conceptual relationships between
model output classes. Dataset classes inherit the semantic
relationships in language. As a result, datasets, like CIFAR-
100 [7], contain built-in conceptual hierarchies with par-
ent/child relationships between the output classes and more
abstract concepts. By propagating uncertainty values through-
out the conceptual hierarchy, we expand the number and
complexity of concepts we can reason about. The result is an
uncertainty fingerprint representing the model’s confidence for
every concept in the hierarchy for a given input (Fig. 1). Unlike
an uncertainty value, an uncertainty fingerprint describes the
model’s confidence in every possible decision. Instead of only
having uncertainty values for output classes, like trout, we
now know the model’s confidence in a range of higher-level
concepts, like £ish. Uncertainty fingerprints give us a more
detailed vocabulary to describe and categorize uncertainty by
distinguishing how the model proceeded from a broad idea to
its precise prediction.

We introduce hierarchical entropy metrics to analyze un-
certainty fingerprints at scale and generate a global under-
standing of network uncertainty. Hierarchical entropy encodes
the distribution of uncertainty at each level of the hierarchy
and represents how certain the model was at each level of
abstraction. Using entropy encodes how the model became
certain in its decision while ignoring which decision the model
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Fig. 1. Interpreting uncertainty reveals the model’s decision-making process.
By propagating the model’s confidence through a conceptual hierarchy, we
create an uncertainty fingerprint describing the model’s behavior. Here we
show uncertainty fingerprints for three CIFAR-100 [7] images. The model is
fully confident the top image contains a willow. However, in the middle
example, the model is sure the image comprises a t ree but uncertain if it is
an oak, pine, or willow. And in the bottom example, the model is split
between multiple objects (oak or house) in the image.

made. For instance, the hierarchical entropy of an input that
the model is confident is a trout will be identical to an
input that the model is confident is a tractor. As a result,
clustering inputs based on hierarchical entropy reveals patterns
of model decision-making regardless of semantic content.
Interpreting uncertainty supports critical model analysis
tasks, including categorizing types of model uncertainty, iden-
tifying common failure modes, and reasoning about a model’s
decision. By combining uncertainty fingerprints and hierar-
chical entropy, we encode model inputs into an uncertainty-
based embedding space. The embedding space represents the
model’s decision-making patterns and can reveal common
types of model uncertainty and identify outliers. Expanding the
vocabulary to describe model uncertainty can lead to critical
insights into model behavior that inform better modeling
procedures, human intervention, and model deployment.

II. RELATED WORK

To gain trust and adoption, neural networks must communi-
cate their uncertainty. Human stakeholders need to understand
how confident the model is in its decision, what other options
it considered, and how it arrived at this decision to ensure
proper development and safe deployment.

As a result, research has developed techniques to measure
the model’s confidence in its decision. Bayesian machine
learning [2] inherently includes uncertainty by relying on
probabilistic models that output confidence bounds for their
decisions. However, deep learning models are deterministic
and must depend on uncertainty estimation techniques to mea-

sure uncertainty. The most straightforward approach is to scale
the model’s output via a softmax function to extract confidence
probabilities for each class. However, many deep learning
models are highly overconfident, so their confidences may not
accurately represent the probability of a correct output [8].
Calibration techniques such as temperature scaling [9] and
histogram binning [5] ensure the output probabilities match
the empirical frequencies found in the data. Other uncertainty
estimation techniques mimic probabilistic models by adding
dropout noise during inference [4] or ensembling many models
independently trained on the same data [3].

Once uncertainty is extracted, it can be categorized as either
epistemic or aleatoric [10, 11]. Epistemic uncertainty indicates
that the network is uncertain because of a lack of information
and encompasses cases where multiple model parameters
can separate the input data. Increasing the amount of data
can reduce the amount of epistemic uncertainty. Aleatoric
uncertainty is due to observational noise. For instance, noise
may come from labeling errors or human disagreements about
labels. Aleatoric uncertainty is not reducible because even
optimal model parameters will not accurately separate the data.

Categorizing uncertainty as epistemic or aleatoric can in-
form important decisions about data collection. However, these
categorizations are orthogonal to our goal of using uncertainty
to understand model behavior. For example, if we showed our
model an out-of-distribution input, its uncertainty would be
epistemic. However, we would still have questions about what
the model thought the input might be or how it reasoned about
this new input. By combining model uncertainty with concep-
tual hierarchies, we can understand the model’s confidence in
various concepts and begin to answer these questions. Using
our method, we can identify options the model considered,
find a high-level concept the model was confident about, and
uncover inputs where the model was similarly uncertain.

We rely on conceptual hierarchies to expand the vocab-
ulary models use to describe their uncertainty. Conceptual
hierarchies are human representations of knowledge, such as
relationships between words [12] or evolutionary taxonomies
of organisms [13]. In machine learning, conceptual hierarchies
are built into many tasks, such as image classification [7],
medical diagnostics [14], and text prediction [12]. Even
datasets that do not explicitly include a hierarchy have been
incorporated into existing conceptual hierarchies by matching
their output classes with corresponding concept nodes [15].

Interpretability research has also focused on better under-
standing machine learning model decisions [16, 17]. Feature
visualization [18, 19], attribution [20, 21, 22], dimensional-
ity reduction [23, 24], and combinations of multiple meth-
ods [25, 26] help users reason about neural networks. These
methods allow users to explore how models represent semantic
relationships like features important to a specific class or
images similar to one another in latent space. However, they
rarely incorporate confidence values and primarily surface
the model’s semantic representations. In contrast, interpreting
uncertainty uncovers patterns in model decision-making based
on the similarity of its confusion.



III. INTERPRETING UNCERTAINTY

Understanding model uncertainty is challenging. While
models output their confidence in each output class, they do
not consider the relationships between the classes. To make
sense of model reasoning, humans must manually examine a
complex collection of its confidence values. If the model is
confident in one output class, the confidence values will be
easy to understand. However, if the confidence is distributed
across many classes, humans must identify relationships be-
tween the classes to reverse engineer the model’s reasoning.
To improve the uncertainty analysis process, we synthesized
four design goals that interpreting uncertainty must achieve.
1. Describe the model’s confidence at varying levels of

abstraction. Existing uncertainty estimation techniques

expose the model’s uncertainty at the output granularity.

Interpreting uncertainty should communicate uncertainty at

various levels of abstraction to express patterns like the

model is confident this image contains a fish but does not
know the species.

2. Represent the model’s decision-making pattern. Inter-
preting the model’s decision-making pattern from a list of
tens, hundreds, or thousands of uncertainty values is cog-
nitively challenging. Interpreting uncertainty should make
it easy to understand how the model came to its prediction
and what other options it considered.

3. Enable large-scale analysis of model uncertainty. Ana-
lyzing the model’s confidence values describes its reasoning
on an input. However, exploring model uncertainty across
an entire dataset can uncover behavior patterns and failure
modes. Interpreting uncertainty should support the analysis
of single inputs and datasets.

4. Support post hoc interpretation on a wide variety of
models and datasets. Understanding model uncertainty
is critical for thorough development and safe deployment.
Interpreting uncertainty should apply to many model frame-
works, tasks, and modalities.

To achieve our design goals, we incorporate the output
classes into a conceptual hierarchy that expands the number
and complexity of concepts in which the model can express
its uncertainty (Design Goal 1). By propagating the model’s
output uncertainties through the hierarchy, we create an un-
certainty fingerprint that represents how the model proceeded
from a broad concept to a precise prediction (Design Goal
2). We encode each uncertainty fingerprint as a hierarchical
entropy vector representing the model’s uncertainty at each
level of abstraction (Design Goals 1 and 2). Comparing hier-
archical entropy vectors identifies global uncertainty patterns
and reveals recurring model and dataset failure modes (Design
Goal 3). Our method only requires uncertainty estimates
and a conceptual hierarchy related to the task, making it
usable across various data modalities, model architectures, and
downstream applications (Design Goal 4).

A. Integrating Conceptual Hierarchies with Model Outputs

Conceptual hierarchies represent human knowledge by en-
coding relevant concepts and the parent/child relationships

Hierarhcical Entropy Embeddings for CIFAR-100 Test Images (PCA)  Hierarhcical Entropy Embeddings for CIFAR-100 Test Images (PCA)
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Fig. 2. Hierarchical entropy encodes how the model proceeded from a broad
concept to a precise prediction. Here, we show two PCA projections [23]
of the hierarchical entropy of CIFAR-100 [7] test images. The points are
colored by the level where the model is 90% confident in a single node
(left) and their superclass label (right). Since hierarchical entropy encodes the
model’s decision-making process, we see a correlation between hierarchical
entropy and the confidence level. There is no correlation between hierarchical
entropy and the superclass label because, unlike other interpretability methods,
hierarchical entropy explicitly ignores input semantics.

between them. For example, conceptual hierarchies often
describe the relationships between objects, and many machine
learning datasets, such as CIFAR-100 [7], are built on top
of them. By linking the model’s output labels into these
conceptual hierarchies, we can describe the model’s confidence
in additional and more complex concepts.

We represent conceptual hierarchies as directed acyclic
graphs (DAG). In each DAG, the leaves are the output classes,
the root is an abstract concept, and every path from the
root to a leaf is the same length. The DAG consists of m
nodes: N = {ng, ..., nm—1}. The nodes are split into h levels:
L = {lp,...,ln—1}, where the leaf nodes are contained in [g.
The CIFAR-100 [7] DAG corresponds to its built-in hierarchy
(h = 3, m = 121, |lgp] = 100). The leaves are the classes,
the second level contains the superclasses, and the root is an
abstract node connecting all superclasses.

B. Describing Confidence via Uncertainty Fingerprints

We use the conceptual hierarchy to represent the model’s
uncertainty. For a given input, we compute the model’s con-
fidence for every output class: C' = {co,...,¢|j,|—1} Where
> C = 1. Each output confidence ¢; corresponds to its leaf
node n;. In our examples, we use the softmax probabilities of
the model’s output.

Next, we assign uncertainties to every node in the hierarchy,
creating an uncertainty fingerprint (Fig. 1). An uncertainty
fingerprint represents the model’s decision-making process on
an input. It is a collection of confidence values for every
node in the hierarchy: F' = {fo,..., fmm—1}. The fingerprint
confidence of a node is the sum of the confidence of every
reachable leaf node.

fi= Z{chcj € C'| a path exists from n; to n;}

Since leaf nodes can only reach themselves, they inherit the
model’s confidence in their class (f; = ¢; for n; € ly).
C. Encoding Fingerprints with Hierarchical Entropy

Uncertainty fingerprints represent the model’s behavior on
a single input, but comparing multiple fingerprints allows us
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Fig. 3. Examples of the model’s decision-making process on nine images from the CIFAR-100 test set. Each image is accompanied by its fingerprint nodes
that have non-zero confidence. The left column contains examples where the model was confident in its level O prediction. The middle column comprises
examples where the model was uncertain until the level 1 superclasses. These examples reveal cases where the model has yet to learn the right level of
abstraction (e.g., type of rodent), or the image is hard to precisely categorize (e.g., a small aquatic mammal in a large body of water). The rightmost
column includes instances where the model was not confident until the root node. These examples reveal dataset complexities (e.g., multi-object images), poor
hierarchical categorizations (e.g., two vehicle superclasses), and model confusion (e.g., not differentiating a f1ower from a crab).

to analyze the model’s decision-making processes across the
entire dataset. One way to compare fingerprints is to compare
the uncertainty at each node. Two fingerprints would be similar
if they had similar uncertainty values on identical nodes, so
the inputs would likely be from related classes. However, we
are interested in how a model makes its decisions, not the
semantic content of input, so we use hierarchical entropy.
Hierarchical entropy encodes how the model proceeds from
a broad idea (root) to a precise concept (leaf) and ignores the
model’s semantic categorization of an input (Fig. 2).

Hierarchical entropy measures the entropy of the model’s
confidence for each level in the conceptual hierarchy. It takes
in an uncertainty fingerprint and outputs a vector of length h
representing the uncertainty at each level.

HE(F) = = > {fi*log(f;) ¥ fi € F|n; € I}

Hierarchical entropy treats each level of the fingerprint as
a probability distribution of the model’s confidence in the
level’s nodes. Given an uncertainty fingerprint can be thought
of as levels of probability distributions, hierarchical entropy
measures how certain the model is at each level of abstraction.
If the model is fully confident in a single node, then that level’s
entropy will be 0. On the other hand, if the model is very
uncertain and its confidence is distributed across many nodes
in a level, that level’s entropy will be higher.

IV. MODEL UNCERTAINTY ANALYSIS

Analyzing model uncertainty can improve our understand-
ing of model behavior. For example, understanding uncertainty
is essential when scrutinizing the performance of a new
model, trading-off collaboration in an integrated workflow, and
identifying failure modes of a high-stakes model. Interpreting
uncertainty supports these use cases by revealing the model’s
reasoning for a specific decision, uncovering typical failure
modes, and discovering dataset limitations.

In this case study, we are interpreting uncertainty to better
understand the performance of an image classification model.
We trained a ResNet20 [27] on CIFAR-100 [7] using cross
entropy loss optimized via stochastic gradient descent with
Nesterov momentum [28] and data augmentation [29]. The

resulting model achieves 68% accuracy on the test set. This
accuracy is low, so let’s interpret the model’s uncertainty to
discover how it is making decisions and what types of uncer-
tainty it faces. Using the CIFAR-100 conceptual hierarchy, we
create uncertainty fingerprints for every image in the test set
and compute their hierarchical entropy vectors.

Given the model’s poor performance, it is essential to
understand how confident the model is in its predictions. If
the model is highly confident, it could indicate the model is
overfitting to the training data and needs more regularization.
On the other hand, if the model is uncertain in its predictions,
it likely has yet to learn the distinguishing features of classes
or the right level of abstraction. Fig. 2 shows the hierarchical
entropy vectors colored by the conceptual level where the
model becomes 90% confident in a single node. We see a
distribution of points where the model is confident in its output
(blue), uncertain until the superclass (orange), and unsure
until the abstract root concept (red). The distribution balance
indicates the model is not very confident in its predictions. We
see many cases where the model has learned the superclass
but not the fine-grained output class (yellow). This type of
failure might be acceptable if our downstream task does not
require high specificity. However, it is concerning we see many
instances where the model is not confident until the root node
(red). These are instances where the model is confused across
many different output classes and superclasses. Let’s examine
what is causing the model to be so highly confused.

Sampling images and their uncertainty fingerprints reveals
how the model reasoned about each input. Our model is
confident about easy-to-distinguish images like a well-framed
bicycle (Fig. 3a) or a closeup of a poppy (Fig. 3c). How-
ever, in some cases, our model struggles to categorize an image
at the correct level of abstraction. For instance, our model is
not sure what type of rodent is in Fig. 3e or the age and gender
of the person in Fig. 3f. Our analysis also exposes dataset
issues. Some images are challenging to classify precisely, like
a small aquatic mammal jumping out of a large body of
water (Fig. 3d). Other images contain multiple valid objects,
like the plain of grazing cattle (Fig. 3g). The fingerprints
also reveal that the conceptual hierarchy is imprecise. Two
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Fig. 4. The model’s co-occurrence matrix of the CIFAR-100 [7] superclasses.
A co-occurrence occurs if each superclass has an output subclass with
non-zero confidence in the same uncertainty fingerprint. The co-occurrence
matrix reveals the model’s most frequent source of uncertainty is a lack
of classification precision. Superclasses are most frequently confused with
themselves or related superclasses, like vehicles 1 and vehicles 2.

superclasses include highly similar concepts — vehicles 1
and vehicles 2 (Fig. 3h). Finally, we see examples where
the model is confused by an image that is easily classifiable
by a human. For example, Fig. 3i clearly contains a flower,
but the model is unsure whether it is an orchid or a crab.

The fingerprints reveal many reasons for our model’s uncer-
tainty and low performance, but how often do these failures
occur, and which ones are most prevalent? To answer this,
we create a co-occurrence matrix of the level 1 superclasses
(Fig. 4). When two level 0 output nodes have non-zero confi-
dence in a fingerprint, their level 1 superclasses co-occur. For
example, in Fig. 3g, large natural outdoor scenes
and large omnivores and herbivores co-occur; in
Fig. 3d, aquatic mammals co-occurs with itself. There is
no co-occurrence in the fingerprint for Fig. 3a because the
model is only confident in one output class. Analyzing the
co-occurrence matrix reveals that the most significant cause of
our model’s uncertainty is an inability to classify an image at
the fine-grained output level. Most co-occurrences occur along
the diagonal, meaning most uncertainty exists within the same
superclass. For example, reptiles co-occurs with itself over
1700 times, meaning our model struggles to distinguish be-
tween members of the reptiles superclass: crocodile,
dinosaur, lizard, snake, and turtle. Our imprecise
conceptual hierarchy is also a major cause of model uncer-
tainty. As we saw in our previous analysis, the model often
confuses classes in the vehicles 1 and vehicles 2
superclasses. Other than that, our model has few egregious
confusions. Most other co-occurrences are between super-

classes containing animals: aquatic mammals, large
carnivores, large omnivores and herbivores,
medium mammals, reptiles, and small mammals.
While these confusions indicate our model lacks precision, we
do not see many blatant confusions of unrelated superclasses.

By interpreting the uncertainty of our image classification
model, we discovered reasons for its poor performance. Hi-
erarchical entropy encoded our images into an uncertainty
embedding space that exposed a distribution of decision types.
Looking at uncertainty fingerprints from different regions of
the embedding space revealed that our model confidently
classified clear images but was less sure about obscure images.
We also discovered dataset limitations, including overlapping
superclasses and multi-object images. By looking at fingerprint
node co-occurrences, we found our model’s largest source of
uncertainty was an inability to classify images precisely at the
output level. These insights helped us understand our model’s
behavior and could inform model improvements.

V. DISCUSSION

Interpreting uncertainty operationalizes model uncertainty
values to provide insight into model behavior. By integrating
conceptual hierarchies with output classes, we include new
concepts at different levels of abstraction, expanding the
vocabulary we can use to describe a model’s uncertainty. Using
the hierarchy, we create uncertainty fingerprints for each input
that expresses how the model proceeded from an abstract
concept to its precise prediction. Comparing the decision-
making pattern of multiple fingerprints with hierarchical en-
tropy enables global analysis of a model’s behavior. In a case
study, interpreting the uncertainty of an image classification
model categorizes types of model confusion and uncovers
common model pathologies that impact performance.

A fundamental interpretation choice of our method is to
align model explanations with existing human knowledge.
The human stakeholders who develop and interpret machine
learning have a learned hierarchical worldview, so we design
models that express uncertainty within the same hierarchical
structure. While other interpretability methods output convo-
luted explanations (e.g., feature visualizations [18]), aligning
model confidence with human priors facilitates efficient ex-
ploration of model behavior.

To express model uncertainty at multiple levels of human
abstraction, we require conceptual hierarchies integrated with
machine learning datasets. Many research datasets contain
hierarchical structures [7, 12, 14]; however, real-world datasets
or data from poorly understood domains may not. Future work
incorporating new data into existing hierarchies or inducing
conceptual hierarchies from flat datasets could address this
limitation and expand the applications of interpreting uncer-
tainty.
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