Semi-supervised Domain Adaptation
for EEG-based Epileptic Seizure Classification

Xinru Chen and Dongrui Wu
School of Artificial Intelligence and Automation
Huazhong University of Science and Technology, Wuhan, China
Email: xrchen@hust.edu.cn, drwu@hust.edu.cn

Abstract—Epilepsy is a neurological disorder, which is usually
detected by electroencephalogram (EEG) signals. Convolutional
neural networks are the most widely used deep learning ap-
proaches in seizure classification. Automatic EEG-based epilepsy
classification faces the challenges of inadequate labeled data,
class imbalance, and individual differences. To address these
issues, this paper proposes APE-cosine, a semi-supervised domain
adaptation approach for cross-patient seizure classification. We
adopted three networks as feature extraction layers and added
data augmentation strategies to alleviate the influence of class
imbalance. Experiments on three different convolutional neural
networks demonstrated that APE-cosine outperformed state-of-
the-art algorithms, including the original APE algorithm.

Index Terms—Seizure classification, electroencephalography,
class imbalance, semi-supervised domain adaptation, convolu-
tional neural network

I. INTRODUCTION

Epilepsy is a chronic non-communicable disease of the brain
that affects people of all ages. Seizures negatively impact
the patients’ physical and emotional health, and hence their
quality of life. Epileptic seizure classification is important to
its diagnostic and treatment.

Electroencephalography (EEG) is the gold standard for
epilepsy classification [1]. However, visual examination of
EEG is labor intensive, and may produce inconsistent results
[2]. Hence, automatic epileptic seizure classification has at-
tracted great research interests.

Automatic epilepsy classification usually consists of four
steps: signal acquisition, signal preprocessing, feature extrac-
tion, and classification. When deep learning (DL) is used,
feature extraction and classification can be integrated into a
single neural network. Popular deep learning approaches for
EEG-based automatic epilepsy classification can be partitioned
into three categories [3]: 1) convolutional neural networks
(CNNs), 2) recurrent neural networks, and, 3) autoencoders.

CNNs are the most widely used deep learning approaches
in seizure classification [4]. SeizureNet [5] uses Fourier trans-
form to convert EEG signals into a time-frequency map, and
then convolutional layers for epilepsy classification. Temporal
Graph Convolutional Networks [6] convert raw EEG signals
into a temporal graph and then use five different layers of
CNNs for classification. Additionally, CNN models that have
shown promising performances in brain-computer interface
applications, e.g., EEGNet [7], Deep ConvNet [8] and Shal-
low ConvNet [8], may also be used for EEG-based seizure
classification.

Challenges in EEG-based seizure classification include:

1) Inadequate labeled samples. In clinical practice, the
acquisition of EEG signals is relatively easy, but their
labeling is time-consuming. Therefore, typically in ad-
dition to a small amount of labeled EEG samples, there
are many more unlabeled EEG samples, which also
contain useful information and should be utilized. Semi-
supervised learning could be a solution.

2) Class imbalance. Epilepsy datasets typically have high
class-imbalance, as generally seizure periods last much
shorter than non-seizure periods. If not properly coped
with, the minority class samples may be easily classified
into the majority class [9].

3) Individual differences. Different patients usually have
different seizure patterns, and hence cross-patient seizure
classification is challenging. Transfer learning can be
used to reduce the discrepancy in data distribution be-
tween the training data (source domain) and testing data
(target domain), and simultaneously solve the problems
of individual differences and inadequate labeled training
data [10].

Many recent works [11] have demonstrated the effectiveness
of semi-supervised learning and transfer learning. However,
few tried to integrate both of them [12].

This paper considers automatic EEG-based cross-patient
seizure classification. We compare four training algorithms
[directly combine source and target domain data for training
(S+T) [13], Minimum Entropy Regularization (ENT) [14],
Minimax Entropy (MME) [15], and Attract, Perturb, and
Explore (APE) [16]] on three CNNs (EEGNet [7], Deep
ConvNet, and Shallow ConvNet [8]) architectures, and also
improved APE for better performance.

The remainder of this paper is organized as follows:
Section II introduces related works on EEG-based seizure
classification and transfer learning. Section III describes the
seizure classification framework, baseline approaches, and our
proposed APE-cosine. Section IV presents the experimental
results. Finally, Section V draws conclusions.

II. RELATED WORKS

This section briefly introduces previous works on EEG-
based seizure classification and transfer learning.



A. EEG-based Seizure Classification

EEG-based automatic epilepsy classification research dates
back to the 1970s [17]. Shoeibi et al. [4] gave a compre-
hensive review on EEG-based automatic seizure classification
using deep learning. There are multiple datasets available for
automatic epileptic seizure classification, such as Hauz Khas
[18], CHB-MIT [19], Bonn [20], Kaggle [21], and NICU
[22]. Table I summarizes commonly used seizure classification
datasets. NICU is used in this paper.

TABLE I
POPULAR PUBLICA SEIZURE EEG DATASETS.

Dataset No. of No. of Recording ~ Sampling  Time

Patients Seizures Type Rate (Hz) Length (h)
Hauz Khas [18] 10 - Scalp EEG 200 -

CHB-MIT [19] 22 163 Scalp EEG 256 644

Bonn [20] 10 — Intracranial EEG 256 708

Kagele [21] 2 humans 48 Intracranial EEG 5000 21.3

5 dogs 100  Intracranial EEG 400 658

NICU [22] 79 460 Scalp EEG 256 97.4

B. Transfer Learning

The assumption of conventional machine learning is that the
training data and the test data belong to the same distribution.
However, this assumption may not hold in real life, e.g., EEG
data of different seizure patients demonstrate large individual
differences. Transfer learning has been proposed to cope with
this problem [10].

Wang et al. [23] achieved 92.77% accuracy on the CHI-
MIT benchmark using deep transfer. Zhang et al. [24] used
three deep transfer CNNs (VGG16, VGG19, and ResNet50)
for automatic cross-subject seizure classification, achieving
97.75%, 98.26% and 96.17% accuracies, respectively.

Domain Adaptation, a special case of transfer learning,
means that the source domains have labeled data, whereas the
target domain does not. Semi-supervised domain adaptation
adapts the source distributions to the target distribution, mak-
ing use of partially labeled target samples [16]. There have
been only a few studies in this direction [15], [16], [25]-[27],
most proposed for image classification.

III. METHODOLOGY

This section introduces the APE algorithm [16], and our
proposed APE-cosine, for EEG-based seizure classification.

A. APE

APE [16] consists of three main steps: Attraction, Pertur-
bation, and Exploration. The target domain is divided into
an aligned sub-distribution and an unaligned sub-distribution.
Attraction aligns the unaligned target sub-distribution to the
aligned one, through intra-domain discrepancy minimization.
Perturbation perturbs the target sub-distributions to their inter-
mediate regions, propagating the labels to the unaligned target
sub-distribution. Exploration locally modulates the prototypes

in a class-aware manner, complementary to attraction and
perturbation.

Let D, = {(x§,v:°)};~4 be the source domain samples,
and D; = {(x!,y;)}, and D, = {x!}*4 be the labeled
and unlabeled target domain samples, respectively.

APE uses four loss terms (cross-entropy loss, attraction loss,
perturbation loss, and exploration loss), to align the intra-
domain and inter-domain distributions:

IEIEH (»Ccls +a£a +’Y‘C’p+5‘ce) . (l)

The cross-entropy loss L5 is used to train an embedding
function fg(-) with parameters @ and prototypes pr (k =
1,..., K) to align the source domain samples and the labeled
target domain samples:
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where
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in which T is a temperature parameter adjusting the “smooth-
ness” of the output.
The attraction loss £, uses Maximum Mean Discrepancy
(MMD) [28] to minimize the discrepancy between the labeled
and unlabeled samples:
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L, =d(Ds UDy,Dy). 4)
The perturbation loss £, reduces the model overfitting:
K
Hyp(x) == ply=1i|x)logp(y =i]|x,p), (5)
i=1
ry = argmin max Hp(x + 1), (6)
Irl<e P

K
Ly = Exep, [Z Dgrlply=1i|x,p),p(y=1i|x+rx, p)}]

=1
K

+Ezep, lz Dirlply=1i|2p),p(y=ilz+rs,p)

i=1
(7N
where Hp(-) is an entropy function based on the similarity
between a given feature and a prototype, x and z are samples,
and y is the corresponding label.

The exploration loss L. locally modulates the class pro-
totype based on class perception for the attractor term and
selectively aligns some unaligned sample features in the target
domain:

Lo=Ep, [-1u (x)logp(y=ix |x,P)], B
where
M, = {x €D, | Hp(x) < €}, ©)
o =i, 0

M, is a set of unlabeled target samples with entropy smaller
than a threshold €, and —1),_(x) is an indicator function that
filters out alignable samples from the given unlabeled target
samples.
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Fig. 1. The workflow of APE-cosine.

B. APE-cosine

APE computes the estimated label y; for input x; using:
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where W is the fully connected layer weight matrix, fo(x;)
the feature vector, and 7' is the temperature parameter.

To remove the extra temperature parameter 7" and further
reduce intra-class variation, we propose APE-cosine, which
computes the softmax of the cosine similarity between W and
fo(x;). We calculate the similarity scores [s; 1,82, ..., Si.c]
for all ¢ classes, where

(1)

50 Wy holxs) (12)
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in which W; is the weight vector of class j. Prediction
probability can be obtained by normalizing the similarity
scores with a softmax function.

Fig. 1 illustrates the complete workflow of APE-cosine.

C. The Complete Cross-Subject Seizure Classification Frame-
work

Fig. 2 shows our complete flowchart for cross-subject
seizure classification, which includes preprocessing, feature
extraction, APE-cosine classification, and evaluation.

First, raw EEG signals are transformed into fixed-length
trials, after a series of pre-processing operations, including
notch filtering, band-pass filtering, annotation, epoching, and
data augmentation. Then, three CNN models (EEGNet, Deep
ConvNet, and Shallow ConvNet) are used to extract deep
features. The training data and test data come from different
subjects. The test subject has a small number of labeled trials,
and a large number of unlabeled trials. we use APE-cosine to
train a model to label the unlabeled target domain trials.

IV. EXPERIMENTS

This section presents experimental results to demonstrate
the performance of APE-cosine.

A. Dataset

A publicly available dataset of annotated neonatal EEGs
collected from human neonates admitted to the neonatal in-
tensive care unit (NICU) at Helsinki University Hospital [22]
was used. It includes multi-channel 256 Hz EEGs from 79 full-
term neonates with a median recording time of 74 min (IQR:
64-96 min). Each neonate was independently labeled by three
experts every second, 1 for seizure and O for non-seizure. On
average, each expert labeled 460 seizures.
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Fig. 2. EEG-based cross-subject seizure classification framework.

B. Preprocessing

A 50 Hz IIR notch filter was used to remove the power line
interference, and a 0.5-50 Hz band-pass filter was employed
to remove voltage drift and high frequency noise.

Each trial was labeled by three experts, and there were
plenty of disagreements among them. We consider four dif-
ferent cases:

e ‘111, i.e., all three experts labeled the trial as seizure.

The trial was recorded as noise-free segment P, .
e ‘000’, i.e., all three experts labeled the trial as non-
seizure. The trial was recorded as noise-free segment F.

e ‘110, i.e., two of the three experts labeled the trial as

seizure. This trial was recorded as noisy segment Nj.

e ‘100’, i.e., only one expert labeled the trail as seizure.

The trial was recorded as noisy segment Nj.
We then selected patients based on the following three criteria:

Py
> w, 1
AN+ (1— NNy = (13)
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> w, 14
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<
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(13) and (14) indicate the purity of non-seizure and seizure
trials, respectively. Both have to be greater than or equal to
a threshold w = 10 (A = 0.8). (15) indicates the degree of
class imbalance, which should be no larger than a threshold
6 = 50. Seven patients, as shown in Table II, were selected
for subsequent algorithm evaluation, and voting of the three
experts was used for final annotations [29].

We epoched the EEG time series using a 4s sliding window.
Thus, each trial is a 18 x 1024 (18 channels, 1024 sampling
points) matrix. In training, we increased the number of seizure
trials using 25% sliding window overlap. No overlap was used
for non-seizure trials in training, and all trials in validation and
test.

C. Feature Extraction and Classification

Three networks, EEGNet, Deep ConvNet, and Shallow
ConvNet, were used for feature extraction and classification.

TABLE I
CHARACTERISTICS OF THE SEVEN PATIENTS.

Patient Recording Ratio of Non-seizure

Index Duration (min) to Seizure Duration
13 256.9 10.27
31 58.8 18.22
34 108.2 13.25
36 84.7 9.33
62 97.5 14.25
66 189.2 5.53
75 65.9 3.29
Avg 123.0 10.59

EEGNet [7] is a general and compact CNN specifically
designed for general EEG recognition tasks. EEGNet uses a
temporal convolution to learn frequency filters, then a depth-
wise convolution to learn frequency-specific spatial filters, and
finally separable convolutions to learn a temporal summary for
each feature map individually and to optimally mix the feature
maps.

Deep ConvNet [8] has achieved promising performances in
multiple different BCI paradigms. It consists of five convolu-
tional layers and a softmax classification layer, which can be
used to extract temporal and spatial information from EEGs.

Shallow ConvNet [8] was specifically designed for oscilla-
tory signal classification (by extracting features related to log
band power). It consists of two convolutional layers (temporal
and spatial), a squared nonlinearity [f(z) = 2%], a mean
pooling layer, and a logarithmic nonlinearity [ f(z) = log(z)].

D. Patient-Specific Seizure Classification

For patient-specific seizure classification, we used the first
80% of the seizure and non-seizure segments as the training
set, and the remaining 20% as the test set. 25% of the training
set was further reserved for validation. Adam optimizer with
initial learning rate 0.001 and batch-size 64 was used. The
maximum number of training epochs was 50, and AUC was



used as an indicator to select and save the best model based
on the validation set.

We repeated all three CNNs three times for each subject
with the same experiment settings and report the average
results in Table III.

TABLE III
PATIENT-SPECIFIC SEIZURE CLASSIFICATION AUCS (%).

EEGNet Deep ConvNet Shallow ConvNet  Avg
wlo data 78.73 85.15 90.74 84.87
augmematlon
w/ data
91.58 92.61 92.48 92.22

augmentation

Data augmentation of seizures was implemented by sliding
windows with 25% overlap. Table III shows that on average it
increased the AUC by 7.35%, and the AUC of every CNN
model exceeded 90% after data augmentation. Thus, data
augmentation was used in all subsequent experiments.

E. Semi-Supervised Cross-Patient Seizure Classification

Semi-supervised cross-patient seizure classification assumes
a large amount of labeled EEGs from the source subjects, and
2-min labeled EEGs and a large amount of unlabeled EEGs
from the target subject. For example, when Patient 13 is the
target subject, he/she has 2 minutes of labeled EEGs and 254.9
minutes of unlabeled EEGs, and the remaining 6 patients were
used as the sources subjects. Each patient was used as the
target subject once, and the average results are reported.

Our proposed semi-supervised domain adaptation approach
was compared with APE [16], MME [15], ENT [14], S+T [13],
and Source-only. ENT trains a model using all labeled and
unlabeled data, whose task classifier maximizes the entropy
of the unlabeled data whereas the feature extractor minimizes
the entropy. S+T trains a model on all labeled samples. Source-
only uses data in the source domain for training and unlabeled
data in the target domain for testing.

We adopted EEGNet, Deep ConvNet and Shallow ConvNet
as the backbone network. Each mini-batch consisted of the
same number of labeled source samples and labeled target
samples, and twice the number of unlabeled target samples.
Adam optimizer with initial learning rate 0.001 was used.
We randomly combined 20% of the source domain data and
40% of the labeled target domain data as the validation set
to select the best hyperparameters. The temperature parameter
was set to 0.5. The batch size was selected from {32, 64, 128}.
For MME, A was selected from {0.01,0.05,0.1,0.2}. For
APE and APE-cosine, the threshold € was selected from
{0.1,0.3,0.5,0.7}, and the loss term weight parameters
(o, B,7) was selected from {(10,1,10),(1,0.1,1)}.

The results are shown in Table IV and Fig. 3. Source-
only had the worst performance, indicating the necessity of
using some target domain data for patient-specific calibration,
due to individual differences. S+T had the worst performance
among all algorithms that used target domain data, as it only
used the labeled target domain data, whereas others also used
the unlabeled target domain data. APE achieved the best

performance among existing approaches, but our proposed
APE-cosine further improved it by about 2%.

100

B Source-only
- ST

. ENT APE
. MME BN APE-cosine

AUC (%)
2
2

EEGNet

ShallowConvNet

DeepConvNet

Fig. 3. Semi-supervised cross-subject seizure classification results, averaged
over the seven subjects.

V. CONCLUSIONS

EEG-based automatic seizure classification plays a crucial
role in the diagnosis and treatment of epilepsy. However,
the machine learning algorithms have to cope with the chal-
lenges of inadequate labeled samples, class imbalance, and
individual differences. This paper has proposed APE-cosine, a
semi-supervised domain adaptation approach for cross-patient
seizure classification. Experimental results using three differ-
ent CNN models demonstrated its effectiveness.
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