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Abstract—This paper investigates the distributed robust con-
sensus control (DRCC) of multi-agent systems via adaptive
dynamic programming. To deal with matched uncertainties, a
novel local value function is designed for each agent which
contains the bound functions, the consensus errors, and the
control laws of the follower and its neighbors. Subsequently,
the distributed robust consensus control problem is transformed
into an optimal consensus control problem. It shows that the
distributed optimal consensus controller can achieve the robust
consensus between the leader and the followers, which means
that all followers subject to matched uncertainties synchronize
to the leader. Hereafter, the distributed optimal consensus control
law is derived by solving the coupled Hamilton-Jacobi-Bellman
equation of each follower via critic-only structure. Furthermore,
the convergence of the consensus error of all followers are
guaranteed to be asymptotically stable by using Lyapunov’s direct
method. Finally, single link robot arms are adopted to verify the
effectiveness of the proposed DRCC approach.

Index Terms—Adaptive dynamic programming, multi-agent
systems, robust control, optimal consensus control.

I. INTRODUCTION

D ISTRIBUTED control of multi-agent systems (MASs)
has attracted much attention due to its broad applications

in various areas, such as power systems, sensor networks,
spacecraft systems and robotic systems. As one of the most
important and fundamental issues in distributed control, con-
sensus control which aims to make all the agents reach
synchronization, is widely investigated in control commu-
nity. In practice, each following agent not only has to be
consistent with the leader, but also needs to consider the
energy consumption, so it desires to achieve consensus in
an optimal manner. Consequently, the distributed optimal
consensus control (DOCC) receives extensively attention and
aims to design distributed control laws such that all followers
agree with the leader and minimize their performance index
function. It is worth mentioning that DOCC needs to address
the coupled Hamilton-Jacobi-Bellman (HJB) equation, which
is a nonlinear partial differential equation and difficult to
obtain its analytic solution [1]–[5].
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It is well-known that adaptive dynamic programming
(ADP), which was proposed by Werbos [6], has been rec-
ognized as an effective tool to solve the HJB equation and
was adopted to address various control problems such as
fault-tolerant [7], input constraints [8], dynamic uncertainties
[9], and differential game [10]. For DOCC of MASs, several
results have been developed. Zhang et al. [11] investigated
the DOCC of discrete-time (DT) MASs via data-based rein-
forcement learning (RL) approach. Yang et al. [12] developed
policy gradient-based RL method for DT MASs by using
offline system interaction data. Sun et al. [13] studied the
DOCC of continuous-time (CT) MASs subject to external dis-
turbance. To save the computing resources, an event-triggered
condition is designed for each agent and the controller is
updated at triggering instants only. Wang et al. [14] proposed
an off-policy model-free integral RL approach to address the
fully DOCC problem of CT MASs. Khankalantary et al. [15]
considered the DOCC of MASs with input saturation and
collision avoidance constraints.

It is noticed that aforementioned results do not consider
dynamic uncertainties. However, in practice, MASs works in
complex environments, such as unmanned aerial vehicle in
disaster relief, underwater robot in search and rescue, and
robot arm in industrial production. Therefore, the occurrence
of dynamic uncertainties is inevitable. In order to deal with
the dynamic uncertainties, researchers have developed a large
amount of ADP-based robust control methods in recent years.
Jiang et al. [16] developed online robust ADP approach for
nonlinear CT systems based on the small-gain theorem and
the ADP theory. Liu et al. [17] studied the robust control
of uncertain CT systems with input constraints. By designing
a appropriate cost function, the robust control problem was
transformed to an optimal control problem and a RL-based
robust control approach was developed. Yang et al. [18]
investigated the event-triggered robust control of unknown CT
systems via adaptive critic designs. Wang et al. [19] proposed
an event-based guaranteed cost control approach for CT sys-
tems with matched uncertainties. Mu et al. [20] addressed the
robust tracking control problem with mismatched uncertainties
by establishing an auxiliary system.

All the above mentioned works consider single agent sys-
tems only. However, MASs subject to dynamic uncertainties
is more difficult to address since agents are connected with
each other through a communication network, the effect of one
agent’s uncertainties will affect other agents. In conclusion,
it is significant to develop an ADP-based DRCC scheme
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for MASs with dynamic uncertainties. This motivates our
research.

The rest of this paper is organized as follows. In Section II,
the DRCC problem of MASs is formulated. In Section III, the
ADP-based DRCC design, the neural network implementation,
and the stability analysis of MASs are provided. In Section IV,
the effectiveness of the developed ADP-based DRCC method
is verified on single link robot arms. In Section V, a brief
conclusion is given.

II. PRELIMINARIES

A. Graph Theory

Consider the undirected communication topology graph
denoted by Πg = {P, ξ,A}, where P = {p1, ..., pN} is a
set of nodes, ξ = {(pi, pj) : pi, pj ∈ P} is a set of edges,
A = [aij ] is a weighted adjacency matrix, and N is the number
of follower. If and only if the agent i and the agent j are
directly connected, then (pi, pj) ∈ ξ. Moreover, aij > 0 if
(pi, pj) ∈ ξ, aij = 0 if (pi, pj) /∈ ξ, and aii = 0 for all
i = 1, ..., N . Let Ni = {j : (pi, pj) ∈ ξ, j ̸= i} be a set of
neighbors of agent i, N̄i be a set of agent i and its neighbors,
D = diag{d1, ..., dN} with di =

∑
j∈Ni

aij be the degree
matrix of Πg , L = D − A = [lij ] be the Laplacian matrix
with lij = −aij and lii =

∑Ni

j=1 aij .

B. Problem Formulation

Consider the nonlinear MASs with one leader and N
followers. The system dynamics of each follower is described
as

ẋi = Fi(xi) + Gi(xi)
(
ui +Πi(xi)

)
, (1)

where xi ∈ Rni is the system states of the follower i, ui ∈
Rmi is the control input of the follower i, Πi(xi) ∈ Rmi is the
matched uncertainty, and Fi(xi) ∈ Rni and Gi(xi) ∈ Rni×mi

are nonlinear system functions.
Assumption 1: The matched uncertainty Πi(xi) is norm-

bounded as ∥Πi(xi)∥ ≤ Π̄i(xi), where Π̄i(xi) is a positive
definite function.

Assumption 2: The control input matrix Gi(xi) is norm-
bounded as ∥Gi(xi)∥ ≤ Ḡi, where Ḡi is a positive constant.

The system dynamics of the leader is given by

ẋ0 = f0(x0), (2)

where x0 ∈ Rn0 and f0(x0) ∈ Rn0 is a differential function.
Then, the local neighborhood consensus error of the follower
i is defined as

Ei =
∑
j∈Ni

aij(xi − xj) + ci(xi − x0), (3)

where ci ≥ 0 is the pinning gain. The dynamics of the local
neighborhood consensus error can be obtained by differenti-
ating (3) as

Ėi =
∑
j∈Ni

aij(ẋi − ẋj) + ci(ẋi − ẋ0)

=
∑
j∈Ni

aij

(
Fi(xi) + Gi(xi)

(
ui +Π(xi)

)

−Fj(xj)− Gj(xj)
(
uj +Π(xj)

))
+ ci

(
Fi(xi) + Gi(xi)

(
ui +Π(xi)

)
− f0(x0)

)
=

∑
j∈Ni

aij

(
Fi(xi) + Gi(xi)

(
ui +Π(xi)

))
+ ci

(
Fi(xi) + Gi(xi)

(
ui +Π(xi)

))
−

∑
j∈Ni

aij

(
Fj(xj) + Gj(xj)

(
uj +Π(xj)

))
− cif0(x0)

= (lii + ci)
(
Fi(xi) + Gi(xi)

(
ui +Π(xi)

))
−

∑
j∈Ni

aij

(
Fj(xj) + Gj(xj)

(
uj +Π(xj)

))
− cif0(x0). (4)

The nominal system of (1) is expressed by

ẋi = Fi(xi) + Gi(xi)ui. (5)

Then, the corresponding local neighborhood consensus error
dynamics is given by

Ėi = (lii + ci)
(
Fi(xi) + Gi(xi)ui

)
− cif0(x0)

−
∑
j∈Ni

aij
(
Fj(xj) + Gj(xj)uj

)
. (6)

The local value function of the follower i is defined as

Vi(Ei) =
∫ ∞

t

(
Γi(xi) + Ci

(
Ei(τ), ui(τ), u(−i)(τ)

))
dτ,

where Γi(xi) is a positive definite upper bound function which
will be designed in next section and the utility function Ci(·)
is designed as

Ci(Ei, ui, u(−i)) = ET
i QiiEi + uT

i Riiui +
∑
j∈Ni

uT
j Rijuj , (7)

where u(−i) = {uj |j ∈ Ni} are the control inputs of the
neighbors of follower i, Qii ∈ Rni×ni , Rii ∈ Rmi×mi and
Rij ∈ Rmj×mj are positive definite matrices. The Hamiltonian
of the follower i is defined as

Hi(Ei,∇Vi(Ei), ui, u(−i))

= Γi(xi) + Ci(Ei, ui, u(−i))

+∇VT
i (Ei)

(
(lii + ci)

(
Fi(xi) + Gi(xi)ui

)
− cif0(x0)−

∑
j∈Ni

aij
(
Fj(xj) + Gj(xj)uj

))
.

The local optimal value function of the follower i

V∗
i (Ei)

= min
ui∈ℜ(Ω)

∫ ∞

t

(
Γi(xi) + Ci

(
Ei(τ), ui(τ), u(−i)(τ)

))
dτ

satisfies the HJB equation as

min
ui∈ℜ(Ω)

Hi

(
Ei,∇V∗

i (Ei), ui, u(−i)

)
= 0, (8)
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where ℜ(Ω) is a set of admissible control. Then, the local
optimal consensus control law is derived by

u∗
i = −di + ci

2
R−1

ii GT
i (xi)∇V∗

i (Ei). (9)

Based on (8) and (9), we can obtain

0 = Γi(xi) + Ci
(
Ei, u∗

i , u
∗
(−i)

)
+∇V∗T

i (Ei)
(
(lii + ci)

(
Fi(xi) + Gi(xi)u

∗
i

)
− cif0(x0)−

∑
j∈Ni

aij
(
Fj(xj) + Gj(xj)u

∗
j

))
. (10)

Noticing that (10) is the coupled HJB equation, which is
difficult to solve due to its high nonlinearities [22]. In the
next section, an ADP-based DRCC method is proposed to
overcome this bottleneck.

III. DISTRIBUTED ROBUST CONSENSUS CONTROL DESIGN

A. Distributed Robust Consensus Control Approach

In this section, the positive definite upper bound function
Γi(xi) is deigned as

Γi(xi) =
1

2
Ḡ2
i (lii + ci)

2Π̄2
i (xi)

+
1

2
Nia

2
ij Ḡ2

i

∑
j∈Ni

Π̄2
j (xj).

Then, the DRCC of MASs with matched uncertainties is
transformed to DOCC of its nominal form. The equivalence
of this problem transformation is analyzed in the following
theorem.

Theorem 1: Consider the nonlinear MASs with the leader
(2) and followers (1), the dynamics of the local neighborhood
consensus error given by (4), the local optimal consensus
control law given by (9), and the Assumptions 1 and 2, if
there exists a matrix Qii satisfying

ϱ2λmin(Qii)∥Ei∥2 ≥
∥∥∇VT

i (Ei)
∥∥2 , (11)

where 0 < ϱ < 1. Then, the local neighborhood consensus
error of each follower is asymptotically stable.
Proof. Select the Lyapunov function candidate as

LT1 = Vi(Ei). (12)

Differentiating LT1 along the solution of (4), we can get

L̇T1 = ∇VT
i (Ei)

(
(lii + ci)

(
Fi(xi) + Gi(xi)

(
u∗
i +Πi(xi)

))
−

∑
j∈Ni

aij

(
Fj(xj) + Gj(xj)

(
u∗
j +Πj(xj)

))
− cif0(x0)

)
(13)

Based on (10), we have

−Γi(xi)− Ci
(
Ei, u∗

i , u
∗
(−i)

)
= ∇VT

i (Ei)
(
(lii + ci)

(
Fi(xi) + Gi(xi)u

∗
i

)

−
∑
j∈Ni

aij

(
Fj(xj) + Gj(xj)u

∗
j

)
− cif0(x0)

)
.

(14)

Substituting (14) into (13), L̇T1 becomes

L̇T1 = − Γi(xi)− Ci
(
Ei, ui, u(−i)

)
+∇VT

i (Ei)(lii + ci)Gi(xi)Πi(xi)

−∇VT
i (Ei)

∑
j∈Ni

aijGj(xj)Πj(xj)

≤ − Γi(xi)− ET
i QiiEi +

∥∥∇VT
i (Ei)

∥∥2
+

1

2
∥(lii + ci)Gi(xi)Πi(xi)∥2

+
1

2

∥∥∥∥∥∥
∑
j∈Ni

aijGj(xj)Πj(xj)

∥∥∥∥∥∥
2

≤ − ϱ2λmin(Qii)∥Ei∥2 + (ϱ2 − 1)λmin(Qii)∥Ei∥2

+
1

2
Ḡ2
i (lii + ci)

2Π̄2
i (xi) +

∥∥∇VT
i (Ei)

∥∥2 − Γi(xi)

+
1

2
Nia

2
ij Ḡ2

i

∑
j∈Ni

Π̄2
j (xj)

≤ − ϱ2λmin(Qii)∥Ei∥2 + (ϱ2 − 1)λmin(Qii)∥Ei∥2

+
∥∥∇VT

i (Ei)
∥∥2 . (15)

Therefore, L̇T1 < 0 if the condition (11) holds. It means
that the local neighborhood consensus error of each follower
is guaranteed to be asymptotically stable. The proof is com-
pleted.

B. Neural Network Implementation

In this section, critic NNs are adopted to obtain the ap-
proximate solution of coupled HJB equations. According to
the universal approximation property of NN, the local optimal
value function of the follower i is expressed as

V∗
i (Ei) = W ∗T

ic σic(Ei) + εic(Ei), (16)

where W ∗
ic ∈ Rhc is the ideal weight vector, σic(Ei) ∈ Rhc is

the activation function, hc is the number of hidden neurons,
and εic(Ei) ∈ R is the reconstruction error. Then, the partial
derivative of V∗

i (Ei) with respect to Ei is given by

∇V∗
i (Ei) = ∇σT

c (Ei)W ∗
ic +∇εTic(Ei). (17)

The approximate local value function is defined as

V̂i(Ei) = ŴT
icσic(Ei), (18)

where Ŵic ∈ Rhc is the estimate of Wic. Similarly, we have

∇V̂i(Ei) = ∇σT
ic(Ei)Ŵic. (19)

According to (9) and (17), the local optimal consensus control
law is expressed as

u∗
i = −di + ci

2
R−1

ii GT
i (xi)

(
∇σT

ic(Ei)W ∗
ic +∇εTic(Ei)

)
.

(20)
Then, the approximate local consensus control law is given by

ûi = −di + ci
2

R−1
ii GT

i (xi)∇σT
ic(Ei)Ŵic. (21)
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Based on (10) and (21), the approximate Hamiltonian is

Ĥi(Ei, Ŵic, ûi, û(−i))

= ET
i QiiEi + ûT

i Riiûi +
∑
j∈Ni

ûT
j Rij ûj

+ ŴT
ic∇σic(Ei)

(
(lii + ci)

(
Fi(xi) + Gi(xi)ûi

)
− cif0(x0)−

∑
j∈Ni

aij
(
Fj(xj) + Gj(xj)ûj

))
, eic. (22)

Let W̃ic = Wic − Ŵic be the weight estimation error. The
gradient descent algorithm is employed to minimize the target
function Eic =

1
2e

T
iceic. Hence, the critic NN weight updating

rule is given by

˙̂
Wic = −αc

1

(1 + ΦT
i Φi)2

(
∂Eic

∂Ŵic

)
= − αceicΦi

(1 + ΦT
i Φi)2

, (23)

where αc > 0 is the learning rate and Φi = ∇σic(Ei)((lii +
ci)(Fi(xi) + Gi(xi)ûi) − cif0(x0) −

∑
j∈Ni

aij(Fj(xj) +
Gj(xj)ûj))

Theorem 2: Consider the nonlinear MASs with the leader
(2) and followers (5), the dynamics of the local neighborhood
consensus error given by (6), if the critic NN weight is updated
by (23), then the weight approximation error W̃ic can be
guaranteed to be UUB.
Proof. The proof of Theorem 2 has been provided in [21],
[27], so it omitted here.

C. Stability Analysis

In this section, we will prove that the approximate local con-
sensus control law (21) can guarantee the local neighborhood
consensus error of each follower with matched uncertainties to
be UUB. Before stability analysis, the following assumption
which is common in ADP literature [23]–[26] is provided.

Assumption 3: ∇σic(Ei), ∇εic(Ei), W̃ic and W ∗
ic are norm-

bounded, i.e.,

∥∇σic(Ei)∥ ≤ σ̄ic, ∥∇εic(Ei)∥ ≤ ε̄ic,

∥W̃ic∥ ≤ W̄ic, ∥W ∗
ic∥ ≤ W̄icM ,

where σ̄ic , ε̄ic, W̄ic and W̄ ∗
ic are positive constants.

Theorem 3: Consider the nonlinear MASs with the leader
(2) and followers (5), the dynamics of the local neighborhood
consensus error given by (6), the critic NN weight updated by
(23), and Assumptions 1–3. Then, the approximate local con-
sensus control law (21) can guarantee the local neighborhood
consensus error of each follower to be UUB.
Proof. Select the Lyapunov function candidate as

LT2 = V∗
i (Ei). (24)

Differentiating LT2 along the solution of (6), we can get

L̇T2 = ∇V∗T
i (Ei)Ėi

= ∇V∗T
i (Ei)

(
(lii + ci)

(
Fi(xi) + Gi(xi)ûi

)
− cif0(x0)

−
∑
j∈Ni

aij
(
Fj(xj) + Gj(xj)ûj

))

= ∇V∗T
i (Ei)(lii + ci)Gi(xi)ûi

−∇V∗T
i (Ei)

∑
j∈Ni

aijGj(xj)ûj

−∇V∗T
i (Ei)(lii + ci)Gi(xi)u

∗
i

+∇V∗T
i (Ei)

∑
j∈Ni

aijGj(xj)u
∗
j

− Γi(xi)− Ci(Ei, u∗
i , u

∗
(−i))

= ∇V∗T
i (Ei)(lii + ci)Gi(xi)(ûi − u∗

i )

+∇V∗T
i (Ei)

∑
j∈Ni

aijGj(xj)(u
∗
j − ûj)

− Γi(xi)− Ci(Ei, u∗
i , u

∗
(−i)). (25)

According to (9), we can further drive that

L̇T2 ≤ − 2u∗T
i Rii(ûi − u∗

i ) +
1

2
∇V∗T

i (Ei)∇V∗
i (Ei)

+
1

2

( ∑
j∈Ni

aijGj(xj)(u
∗
j − ûj)

)T

×
( ∑

j∈Ni

aijGj(xj)(u
∗
j − ûj)

)
− Γi(xi)− Ci(Ei, u∗

i , u
∗
(−i))

≤ − 2u∗T
i Riiûi + 2u∗T

i Riiu
∗
i +

1

2
∥∇V∗

i (Ei)∥2

+
1

2

∥∥∥∥∥∥
∑
j∈Ni

aijGj(xj)(u
∗
j − ûj)

∥∥∥∥∥∥
2

− Γi(xi)− Ci(Ei, u∗
i , u

∗
(−i))

≤ [u∗
i − ûi]

TRii[u
∗
i − ûi]− ûT

i Riiûi

+
1

2
∥∇σT

ic(Ei)W ∗
ic +∇εTic(Ei)∥2

+
Ni

2

∑
j∈Ni

∥aijGj(xj)(u
∗
j − ûj)∥2 − ET

i QiEi

≤ λmax(Rii)∥u∗
i − ûi∥2 + σ̄2

icW̄
2
icM + ε̄2ic

+
Ni

2

∑
j∈Ni

a2ij Ḡ2
j ∥u∗

j − ûj∥2 − ET
i QiEi. (26)

Noticing that

∥ûj − u∗
j∥2

=

∥∥∥∥− dj + cj
2

R−1
jj G

T
j (xj)∇σT

jc(Ej)Ŵjc

+
dj + cj

2
R−1

jj G
T
j (xj)∇σT

jc(Ej)Wjc

+
dj + cj

2
R−1

jj G
T
j (xj)∇εTjc(Ej)

∥∥∥∥2
=

∥∥∥∥dj + cj
2

R−1
jj G

T
j (xj)∇σT

jc(Ej)W̃jc

+
dj + cj

2
R−1

jj G
T
j (xj)∇εTjc(Ej)

∥∥∥∥2
≤

∥∥∥∥(dj + cj)R
−1
jj G

T
j (xj)∇σT

jc(Ej)W̃jc

∥∥∥∥2
+

∥∥∥∥(dj + cj)R
−1
jj G

T
j (xj)∇εTjc(Ej)

∥∥∥∥2
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≤ (dj + cj)
2R̄2

jj Ḡ2
j σ̄

2
jcW̄

2
jc + (dj + cj)

2R̄2
jj Ḡ2

j ε̄
2
jc. (27)

Let Θj = (dj+cj)
2R̄2

jj Ḡ2
j σ̄

2
jcW̄

2
jc+(dj+cj)

2R̄2
jj Ḡ2

j ε̄
2
jc. Then,

we further have

L̇T2 ≤ λmax(Rii)Θ
2
i + σ̄2

icW̄
2
icM + ε̄2ic

+
Ni

2

∑
j∈Ni

a2ij Ḡ2
jΘ

2
j − ϱ21λmin(Qii)∥Ei∥2

+ (ϱ21 − 1)λmin(Qii)∥Ei∥2, (28)

where 0 < ϱ1 < 1. Therefore, L̇T2 < 0 if Ei lies outside the
compact set

ΩEi
=

{
Ei : ∥Ei∥ ≤

√
λ2

(1− ϱ21)λmin(Qii)

}
, (29)

where λ2 = λmax(Rii)Θ
2
i + σ̄2

icW̄
2
icM + ε̄2ic +

Ni

2

∑
j∈Ni

a2ij Ḡ2
jΘ

2
j . It means that the approximate local

consensus control law (21) guarantees the UUB of the local
neighborhood consensus error of each follower. The proof is
completed.

IV. NUMERICAL SIMULATION

In this section, single link robot arms are adopted to verify
the effectiveness of the developed ADP-based DRCC scheme.
Assume that MAS contains one leader and three followers.
The communication topology of the MAS is shown in Fig.
1 and the corresponding parameter values are given as c1 =
1, c2 = 0, c3 = 0, a12 = 0.1, a13 = 0.1, a21 = 0.5, a23 =
0.5, a31 = 0.4 and a32 = 0.4.

Fig. 1: Communication topology.

The dynamics of the single link robot arm i is given by

Gq̈i(t)−Mghsin
(
qi(t)

)
+Dq̇i(t) = ui + di, (30)

where qi is the position of the joint, G is the moment of inertia,
M is the quality of the connecting rod, h is the length of the
arm, g is the acceleration of gravity, D is the viscous friction,
ui is the control input, and di is the matched uncertainty. The
values of these parameters are provided in Table I.

TABLE I: Parameters of the single link robot arm

Parameter G M h g D

Value 10 10 0.5 9.8 2

0 5 10 15 20

Time (s)

-5

0

5

0 5 10 15 20

Time (s)

-5

0

5

Fig. 2: Trajectories tracking.

Let xi = [xi,1, xi,2]
T = [qi, q̇i]

T(i = 1, 2, 3). Then, the
dynamics of the single link robot arm i is rewritten as{

ẋi,1 = xi,2

ẋi,2 = −4.905sin(xi,1)− 0.2xi,2 + 0.1ui + 0.1di

The trajectory of the leader is chosen as

x0 =

[
x0,1

x0,2

]
=

[
sin(2t)− cos(0.5t)

2cos(2t)− 0.5sin(0.5t)

]
. (31)

We aim to make the joint position and the speed of all follow-
ers catch up with the leader’s. Let Qii = 10I4, Rii = 0.01I1,
Rij = 0.05I1, the activation function of the critic NN be
σic = [E2

i1, E2
i2, Ei1Ei2], the learning rate of the critic NN be

αc = 1, the matched uncertainty be d = 5sin(xi,1)cos(xi,2),
and the upper bound function be Π̄(xi) = ∥xi∥.

Simulation results are given in Figs. 2–6. In Fig. 2, we can
observe that the followers can track the leader within 10sec.
Fig. 3 shows the consensus errors of all followers. It is clear
that the consensus errors converge to small region of zero after
10sec. Fig. 4 displays that critic weight vectors will converge
to Ŵ1c = [27.32, 5.73, 67.09]T, Ŵ2c = [48.94, 48.54, 55.55]T

and Ŵ3c = [16.40, 47.03, 64.21]T, respectively. Fig. 5 pro-
vides the trajectories of control inputs of all followers. Fig.
6 reveals that the developed ADP-based DRCC scheme can
achieve the robust consensus of multi-single link robot arms.

V. CONCLUSION

In this paper, the ADP-based DRCC scheme is developed
for MASs with matched uncertainties. To begin with, the
DRCC problem is converted to a DOCC problem by designing
a new value function for each follower. Theoretical analysis
shows that distributed optimal consensus controllers can guar-
antee robust consensus of MASs with matched uncertainties.
Meanwhile, the critic-only structure is established to obtain the
approximate solution of the HJB equation of each follower.
Moreover, the UUB stability of MASs with matched uncer-
tainties is demonstrated by using Lyapunov’s direct method.
In the final, single link robot arms are employed to verify the
effectiveness of the developed ADP-based DRCC scheme.
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