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Abstract—Electroencephalogray devices are popular for both
medical and commercial use such as in emotion recognition. One
of the remaining challenges in processing EEG signals is the se-
lection of optimal channels. This paper proposes a new approach
based on binary multi-swarm optimization handling classification
error rate, specificity, sensitivity as objectives. More specifically,
we perform an unsupervised feature learning with recurrent
convolutional layers based on autoencoder architecture directly
from clean EEG signals. In order to provide a scientific evidence,
extensive validation on three public affective benchmarks, i. e.
DASPS, DEAP, and SEED which are different in channel number,
used stimuli, and participant ratings, was carried out with subject
independent scheme.

Index Terms—unsupervised EEG feature learning, convolu-
tional LSTM, channel selection, binary particle swarm optimiza-
tion, local learning strategy.

I. INTRODUCTION

MOTION is a psychological response state that involves

three distinct components: a subjective experience, a
physiological response, and a behavioral or expressive re-
sponse. The ability to recognize emotion is essential in many
fields. For example, human-computer interaction for better
interaction with robots or computer. In the medical field, iden-
tifying a patient’s emotional state can provide an indication for
the healthcare professional of the patient’s mental, physical
state, and progression of the healing process. It may be used
also for online games, entertainment and e-learning.

For emotion recognition, many physiological related signals
have been used. Among them the electroencephalogram (EEG)
that allows to obtain more information about emotional state,
by reading scalp electrical activity generated by brain struc-
tures.

Acquired EEG signals are generally of multi-channel na-
ture. Indeed, a part of these channels may be irrelevant and
redundant, which increase the computational cost and reduce
classification accuracy, especially for the high-dimensional

N. Kouka, R. Fourati, R. Fdhila and A. M. Alimi are with the Research
Groups in Intelligent Machines, Department of Computer Engineering and
Applied Mathematics, National Engineering School of Sfax, University of
Sfax, Sfax 3038, Tunisia.

E-mail: {najwa.kouka.tn, rahma.fourati, raja.fdhila, adel.alimi} @ieee.org

Patrick Siarry is with Laboratoire Image Signaux et Systemes Intelligents
(LISSI), Université de Paris Est, 94400 Créteil, France.

Email: siarry @u-pec.fr

data sets. Thus, it is important to select optimal subset of
channels that is discriminating from all channels.

In the literature, the methods used for EEG channel selec-
tion are derived from feature selection methods [1]. Selecting
the optimal feature set is known as feature selection thus
using these algorithms to select channel is known as channel
selection. The used algorithms for channel selection are mainly
classified into three categories e.g., filters, wrapper, embedded
and hybrid approaches.

Filtering techniques employs an evaluation method such
as distance measure, statistic measure [2] and information
measure [3] [4] to evaluate the candidate channel subsets.
Filtering techniques have some advantages among which are
the high speed, independence from the classifier, but they
suffer from the low accuracy, since they do not consider
the combinations of different channels. The wrapper methods
use classifiers to evaluate the selected channels obtained by
selection algorithms. The evaluation of every candidate is
obtained by training and testing a classification algorithm.
Thus, accuracy of the wrapper methods are better than the filter
methods, but they may consume more computing resources. In
case of the embedded methods, the channels are selected-based
on criteria generated during the training phase of a specific
classifier. Recursive channel elimination is adopted to keep
only channels with appreciated magnitude. This method is a
special cases of the wrapper methods. A hybrid technique is a
combination of a filtering technique and a wrapper technique
attempting to take advantage of both in avoiding the pre-
specification of a stopping criterion.

Without loss of generality, in the filtering method-based
channel selection, the features extracted from the optimal
channel set could produce good results. For wrapper and
hybrid method-based channel selection, feature extraction and
classification are part of the selection procedure, so they
produce the best results.

In fact, finding an optimal subset of channel could regarded
as a minimization problem with two objectives: (1) minimizing
the error rate of classification (maximizing the performance of
classification) and (2) minimizing number of channels. These
two objectives are conflicting, and require an optimization
algorithm to find the best trade-offs for them. During the past
decade, few algorithms have been proposed to solve channel
selection as an optimization problem. Among them, the meta-



heuristics algorithms have shown a lot of advantages in dealing
with optimization problems due to their capability to generate
solutions by the strong ability of exploring and exploiting in
the full search space.

Examples includes the binary particle swarm optimization
(BPSO) algorithm that is a swarm intelligence technique that
has been applied and shown their effectiveness in the channel
selection. One reason why the BPSO algorithm is widely used
is that it can converge more quickly and has less adjustable
parameters compared with the other evolutionary method such
as genetic algorithms.

In fact, most of studies have been conducted on multi-
objective channel selection and not considered two more
important objectives which are specificity and sensitivity. By
formulating channel selection as a many-objective problem,
we can select a subset of optimal channels more relevant than
defined as multi-objective problem.

In this paper, a binary new many-objective particle swarm
optimization with learning strategy (BMaOPSO) is proposed.
The contribution of the proposed BMaOPSO is mainly in
maintaining diversity by using a multi swarm and to accel-
erate convergence by cooperative learning strategy. The main
contributions of this paper can be summarized as following:

1) The optimization of channel selection problem is re-
garded as many objective problem with four conflicting
objectives to optimize simultaneously, including enhanc-
ing of accuracy, specificity and sensitivity and reducing
the channel number.

2) In the BMaOPSO, the updating memory is base on the
improvement rate instead of using dominance compara-
tor.

3) In the BMaOPSO, the multiple-swarm based learning
strategy is adopted to balance between local exploitation
and the global exploration.

4) An elite learning strategy is proposed to promote the
information exchange among the sub-swarms. In order
to spread the superior information obtained by each sub-
swarm, the best particle in each sub-swarm is denoted as
elite particle and it will learn the excellent information
found by other sub-swarms and bring diversity into its
own sub-swarm.

5) In the BMaOPSO, the Unsupervised learning network
is used to evaluate a candidate channel subset, leading
the algorithm to conduct a new search for the optimal
subset based on the evaluation results.

6) Extensive validation on 3 datasets with different char-
acteristics in order to make general evidence, taking in
consideration subject independent classification.

II. RELATED WORK ON CHANNEL SELECTION

The optimization problem of channel selection mostly ro-
tates around to minimize the channel number and to maximize
the performance accuracy that measured by the wrapper meth-
ods. This paper mainly reviews the works on channel selection
methods based on meta-heuristics methods.

The most commonly used algorithms are genetic algorithms
and particle swarm optimization (PSO) algorithms. These

algorithms are suitable for the channel selection, since it is a
population-based algorithm and it able to find solutions (high
accuracy) rapidly through the strong ability of exploring and
exploiting in the full search space. Another advantage of using
these algorithms is its ability of solving conflicting objectives
such as maximize the performance accuracy and minimize
channel number.

Table I present the summary of meta-heuristic algorithms
applied in selecting channels, illustrating the problem ob-
jective, classifier, obtained sub-channels, performance value,
subject type and the adopted application.

For instance, Luis et al. solve the problem of EEG channel
selection for epileptic-seizure classification with the non-
dominated sorting genetic algorithm (NSGA) [S] combined
with SVM and KNN classifiers. The channel selection is
considered as multi-objective optimization problems (MOPs),
including the maximization of classification accuracy and
reducing the channel number. Their results show that with 1
and 2 channels, the accuracy attend 1. and 97,5% respectively.
To improve the performance of channel selection, Luis et
al.included two more objectives: (1) true acceptance rate
(TAR) and (2) a true rejection rate (TRR), and applied for
subject identification system [6]. For channel evaluation the
support vector machines (SVM) is employed. Results conduct
that with three channels the system achieves accuracy of 83%,
with both TAR and TRR of 100%.

Luis et al. is further propose a channel selection method for
a biometric system based on NSGA-III [7] and the local outlier
factor (Lof). Here the problem designed with the objectives of
minimizing the required number EEG channels and increasing
the TAR and TRR. With this method, the most relevant area
is around C6, T8, T10 and F5 channels with eyes open and
the most relevant area is still around the channels C6, T8, T10
and IZ with eyes closed. A high classification performance is
attended with three channels.

In [8], a Binary Particle Swarm Optimization (BPSO)
integrated with Extreme Learning Machine (ELM) is proposed
to select optimum channel set for seizure detection. In BPSO
algorithm, the balance between maximizing accuracy and
minimizing number of channel is obtained by using a linear
fitness function. The proposed methodology achieved 93.21%
detection accuracy by selecting only 6 channels (F3-C3, P3-
C3, F4-C4, F8-T8, T7-FT9, and FT10-T8).

To deceit identification system, Annushree et al implement
a binary version of the BAT algorithm (binary BAT algorithm)
for channel selection [9]. With this method each solution is
evaluated based on the cost function that includes the accuracy
and the selected channel. The accuracy is obtained by the
SVM classifier, achieving average accuracy of 96.8% with 13
channels.

Noor et al [10] use the differential evolution (DE) to
solve the problem of channel selection as a single objective
problem. The objective is minimize the classification error
rate that evaluated by linear discriminant analysis (LDA). The
procedure of this method as the sequential forward search
methods, which added a channel to the channel set at each
step to enhance the performance of the classifier until all
channels have been processed. Based on the DE, the accuracy



TABLE I: Existing EEG channel selection methods

Method Objectives Classifier Optimal channels Performance measure ?s:iiamn Application
NSGA-III [5] IXCIELT;CZ; channels SVM and KNN 1 and 2 channels Accuracy = 0.975 to 1 SI Epileptic-seizure classification
Minimize channels Accuracy = 0.83
NSGA-III [6] Accuracy SVM 3 channels D SI subject identification system
TAR and TRR = 1.00
TAR and TRR
Eyes open:
TAR = 0.993 + 0.01
Minimize channels Eyes open: C6, T8, T10 and F5 TRR= 0.941 + 0.002 Motor movement
NSGA-IT[7] | AR and TRR LOF Eyes closed: C6, T8, T10 and 1Z Eyes-closed SD (EEGMMIDB)
TAR= 0.997 + 0.02
TRR= 0.950 + 0.05
Minimize channels F3-C3, P3-C3, F4-C4, e Seizure detection
BPSO (8] Accuracy ELM F8-T8, T7-FT9, and FT10-T8 Accuracy = 9321 % | SI CHB-MIT Dataset
BAT [9] IX[:?:]?:::; channels SVM 13 Channels Accuracy = 96.8% SI Deceit identification
DE [10] Error Rate LDA 6 Channels Accuracy = 86.85% SI Emotion recognition
Minimize channels F3-C3, FP1, FPz, FP2, AF7, AF8, FC5, e — .
IBGSA [11] Accuracy KNN FC6.T7. TP7, TPS, Cz, POS and PO7 Accuracy = 92.50% SI Screening of Alcoholism

SI: Subject Independent, SD: Subject Dependant.

is enhanced from 80% to 86.85% with 6 channels.

Sandeep et al. propose a Binary Gravitational Search Al-
gorithm (IBGSA) [11] as an optimizer to select the EEG
channels for the rapid screening of alcoholism. The evaluation
of solution is based on the accuracy and the number of selected
channels. The proposed method provides 13 optimum channels
with a detection accuracy of 92.5%.

This research emphases on meta-heuristics show high clas-
sification accuracy with channel number variate form 1 to
13 channels, improving its efficiency in many real-world
application.

A recent method that used a set of swarm-intelligence algo-
rithms, including Grey Wolf Optimizer (GWO), PSO, Cuckoo
Search (CS), and Dragonfly Algorithm (DA) to find salient
features for emotion recognition [12]. The Dominant channels
are identified by analyzing the features selected commonly by
all swarm-intelligence algorithms over the different subjects.
The proposed method was studied on DEAP dataset and the
analysis resulted in 11 channels distributed over all brain
regions.

III. EEG CHANNEL SELECTION BASED ON BMAOPSO
ALGORITHM

To select the most effective EEG channels, we propose
a BMaOPSO algorithm. The pseudo code of BMaOPSO
demonstrated in Algorithm 1 and its main components are
detailed as follows.

IV. PROBLEM FORMULATION

In general, channel selection is an optimization problem
considering two major issues. One of them is to get higher
classification accuracy and the other is to decrease the number
of the selected channels. The emotion recognition required two
other important classification measures which are sensitivity
and specificity.

The goal of channel selection in this work is to reduce
the number of selected channel while maximizing the clas-
sification accuracy, specificity, and sensitivity, which can be
regarded as a many-objective optimization problem. To con-
sider these four objectives, we design the fitness function based

on the linear weighting method. The weighting method used to
determine the trade-off between different objectives. Since the
classification performance is considered to be more important
than the number of selected channels, the weight of channel
function assumes a lower value than other weights. The fitness
function is defined as follows:

M
fitness(p;) = Z w; f5(X5) (1)
=0

Where j denotes the objective function, M denotes the number
of objectives, and w; represents the weight of objective
function j. In this study, the unsupervised classifier RCAE was
employed to evaluate the accuracy, specificity, and sensitivity
of selected channels.

A. Binary Particle Swarm Optimization

The PSO is a population-based algorithm which maintains a
swarm of particles. In PSO, each particle represents a solution
to a particular problem while the fly process of the population
can be regarded as a search process. In each generation, each
particle i is defined by a position vector and velocity vector to
determine its flying direction. During the evolutionary process,
the particle i uses its previous personnel position pp.s; and
the global optimal position of the swarm gp.s: to adjust its
flight trajectory as defined by the following equations:

Vit +1) = wiii(t) + Arl(Zppest(t) — Zi(t)) + 2r2(Fypest (t)
2)

Xi(t+1)=X;(t)+ Vi(t+1) 3)

Although the standard PSO had gained a great success in
solving the problems on continuous space, it was powerless
in discrete space. Therefore, a new component is added to
PSO which is a necessity to be suitable for discrete problem,
and thus a binary version (BPSO) was proposed by Kennedy
and Eberhart [13] based on sigmoid activation function. In the
basic PSO algorithm, due to the continuous real domain of
particle position, particles can move continuously through the
search space. However, for the search candidates to be able
to move in a binary search space, the equation of updating




position is updated as follows: also updated by 2, while
the new position of the particle is updated by the following
formula:

. 1

S(VAt+1)) = - 4

Fe+1) 1+ exp(VA(t +1)) @
rand < VA(t)

Xd(t) = {1’ if 5)

0, otherwise
where rand is a random number uniformly distributed between
0 and 1. The BPSO has been widely applied in many fields
such as EEG channel selection and feature selection problems.

Since, the PSO/BPSO is originally developed for single
optimization problem, the external archive and leader selection
are employed, making the algorithm useful in problem with
more than two objectives to optimize.

B. Solutions Encoding

In the channel selection problem, the solution is represented
in binary form that can be either bit O or 1. Bit ”0” means
the channel is omitted, while the bit ”’1” means the channel
is selected. The number of 17 is the selected channels
number. With this encoding, the algorithm can identify the
optimal channel combination instead of focusing on evaluating
separate channels.

Hence, each particle’s position p; is defined by a di-
mensional vector X; with dimension D), which encoded as
X; = [z122...xp]. The following figure illustrates an example
of a solution with 10 dimensions, in which the channel selected
are 1, 3 and 10.

o 1 X1

0 X_2

0 X_3

0 X4

1 X_5

' 0 X_D
INION

Fig. 1: Solution with D dimension

Individuals are generated by setting only one randomly se-
lected gene to ”’1”” and other channels to 0”. This initialization
increases the number of solutions with a small size of selected
channels and accords with the original intention of finding an
appropriate and small channel subset.

C. Multi-Swarm based Agent Modeling

In the proposed approach, the multi-swarm is used to
enhance the exploration of the search space. The multi-
swarm is modeled as a Multi Agent System (MAS), by
giving the sub-swarm the properties of autonomy and learning.
Although, the multi-swarm topology can provide better pop-
ulation exploration, they can not guarantee the exploitation

of the population. To deal with this issue, many cooperative
interaction strategies have been proposed to balance between
the exploitation and exploration. Among them the learning
strategies.

The evolutionary process of multiple swarm is presented in
Figure 2.

D. Learning Strategies

In the proposed approach, the learning strategy is dived
into global learning strategy and local learning strategy. In
the global learning strategy, a new promising solution is
generated from different sub-swarm and it used to enhance
the exploration ability. While the local learning strategy aim
to improve the exploration by learning from the elite particle.

1) Global Learning Strategy: In the global learning strat-
egy, we generate a new solutions inherit much more use-
ful knowledge learned from different sub-swarms based on
crossover and mutation operators. These two genetic operator
have the ability for enhancing the local exploiting and global
exploring, respectively [14].

However, the main steps of learning strategy are as follows:

« First, communicating local best solutions within different
sub-swarms.

e Second, two parents from these solutions are selected
based on the fitness function.

o Third, a potential solutions are generated based on these
two parents by the crossover operation.

« Fourth, the generated solutions are mutated for enhancing
the diversity.

« Finally, these solutions are then replaced the worst solu-
tions in among sub-swarms.

2) Local learning strategy: Personnel learning through
memory of solution (ppes:) is an important factor in PSO,
as it influences the behaviour of the swarm during the search
process. Traditionally, the py.s: updated only when the new
position of the particle is better than the current ppess. Ac-
cordingly, the traditional updating mechanism of pp.s; Wwill
not be updated if the classification performance is the same
even with less channel number. In order to overcome this
limitation, the particle learn from the elite particle that have a
greater improvement with a relatively smaller fly distance. The
improvement rate [15] is based on both fitness function and
the number of channel to reduce. Based on this consideration,
the memory update is defined as follows:

C_ X if  IXD = (pea)
Poesti = {p}:slti, otherwise ©
I(X;) = f) - f@i ) 7)

t t71H

where ||zf — 2!7"|| denotes the distance between particle at
t and t-1. Since, the position of the particle is defined in
binary terms. Therefore, the distance is measured by Hamming
distance that represents the number of different bits between
two binary positions as defined in 8. However, the greater [
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Fig. 2: Concurrent evolution of sub-swarm for channel selection based RCAE

means that a current particle achieve a higher improvement
with a relatively smaller fly distance than the previous one.

D .
d(xt,xt_l)zz{lv i Xk £ X ()

0, otherwise
k=1

As ppest, the selection of leader also influence the exploita-
tion ability of each solution. For that, the solution with best
fitness function value and lower channel number is selected to
guide the search process.

E. Recurrent Convolutional Autoencoder for EEG signals
classification

In this section, the proposed Recurrent Convolutional Au-
toencoder for EEG signals classification autoencoder is pre-
sented.

1) Basic Concepts: The autoencoder is a feedforward neu-
ral network in which the input is the same as the output. In
other words, autoencoders are (unsupervised) learning algo-
rithms that extract features from input data without the need
for labeled target datasets. The autoencoder consists of three
basic components: the encoder, the code, and the decoder.
These function according to their literal meanings. The en-
coder compresses the input to a ‘code,” which is subsequently
decoded by the decoder. For this reason, the autoencoder can
be used as a dimensionality reduction strategy in time-series
forecasting as it can compress the input to a mapped hidden
layer. The stacked autoencoder is a hierarchically layered stack
of autoencoders and, just like autoencoders, they learn in an
unsupervised manner. The model training process involves
greedy layer-wise training to minimize the error between
the input and output vectors. The subsequent layer of the
autoencoder is the hidden layer of the previous one, with each
of the layers trained by an optimization algorithm using an
optimization function.

2.

FE. Overall Approach

At the beginning of the evolutionary process, the swarm
with N (number of channel) particles is initialized, where

each has a binary components as channels, the initial selected
channel is defined according to the index of particle. For
example particle p; has a channel ¢ selected (X; = 1).

In each generation, the evolutionary process of sub-swarms
is proceeded in parallel. In each sub-swarm, the leader is
selected first based on the fitness function. And each particle
then update its position according to its personnel experience
and the selected leader. Next, the objectives evaluation based
RCAE is performed followed by the evaluation of fitness
function. Next, the solution update its memory pbest according
to its rate of improvement. Once the particle updating is termi-
nated and mutated, the cooperation among the sub-swarms is
achieved by the learning strategy which detailed on above. The
above procedure will be repeated until the maximum number
of generations is reached. One the optimization is terminated,
the archive of BMaOPSO is used as best optimal combination
between channels.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Emotional recognition tasks based on EEG can be divided
into subject-dependent and subject-independent ones. In this
paper, we focused on subject-independent EEG-based emotion
recognition.

This section is related to the evaluation and comparison of
BMaOPSO-based EEG channel selection with the two other
algorithms. The Binary Multi-Objective PSO (BMOPSO) is
a basic binary PSO algorithm, along with a non-dominated
sorting genetic algorithm (NSGAII).

In the experiment studies, the parameters of optimization
was set as follows:

o Population size: 20 solutions

o Maximum evaluations number: 200 evaluations

o Genetic operator: Binary crossover and binary mutation
operators

o PSO Settings: The Settings for velocity updating are
related to the binary PSOs algorithms in which c1 and
c2= Rand (1.75, 2.0), and w = 0.7.
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Fig. 3: Model Architecture of Recurrent Convolutional Autoencoder

A. Emotional EEG Datasets

The experiment study was carried out on three public
databases widely used in EEG-based emotion recognition:
DEAP [16], SEED and DASPS [17]. The details of each
dataset is briefly described in below.

1) DEAP: item DEAP Dataset [16]: The DEAP dataset was
collected from 32 subjects with aged ranged between 19 and
37 years old. They were watching EEG was recorded at a
sampling rate of 512 Hz using 32 channels. Figure 4 shows
the electrode placements for the EEG. They were watching 40
sets of 1-min music and video clips. The experiment started
with a two-minute baseline recording, during which a fixation
cross was displayed to the participant (who was asked to
relax during this period). Then, the 40 videos were presented
in 40 trials. After each trial, the participants were asked to
do a self-assessment about their emotional levels, including
four different scales, such as valence, arousal, dominance,
and liking. Consequently, varied classification problems were
yielded such as Low/High valence (LVHV), Low/High arousal.

Fig. 4: Placement of EEG electrodes in DEAP

2) SEED: item The SEED dataset was collected from 15
subjects (7 males and 8 females) when they were asked to
watch 15 film clips. The duration of each film clip was about
4 min. There were 15 trials for each subject and each trial

consist of a 5s hint before each clip, 45s for self-assessment
and 15s for rest after each clip in one session. EEG data
in SEED dataset was collected from 62 electrodes (Figure
6), which includes more information than the DEAP dataset.
In this dataset , negative, positive, and neutral are emotion
labels that represent the subjects emotion states during each
experiment. Label value of negative, positive and neutral is
—1, 1, and 0, respectively.
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Fig. 5: Placement of EEG electrodes in SEED

3) DASPS: This paper uses the publicly available DASPS
Dataset for anxiety level detection [17]. The database collected
from the 23 participants, where 10 are men and 13 are
women with the mean age of 30 years. The EEG signal is
acquired using Emotiv EPOC, the wireless EEG headset with
14 channels and 2 mastoids with a 128Hz sampling rate.
During the recording of the EEG signal, the study presents
six different situations to the subjects with closed eyes and
minimized gestures. It divides each situation into two parts:
In the first 15 seconds, the psychotherapist recites the situation,
and in the next 15 seconds, the subject recalls the situation. For
each subject the complete process proceeds with three phases.
The first phase includes 5 minutes of Hamilton Pre-Stimuli.
In the second phase, the psychotherapist recites the situation
for the first 15 seconds, and the subject recalls the situation
in the next 15 seconds. The complete process repeats for each



Algorithm 1 BMaOPSO Algorithm

Input: Population P with size N, Trained ConvLSTM model
Output: External Archive F'A

1: fori=1to N do

2:  Initialization of particle p;

33 for j=1to N do
4: if j == then
6: else

7: Xz[]] =0

8: end if

9: end for

—

0:  Evaluate f;,j =1,...,k

11:  Save non-dominated solutions of P in the archive £ A
12: end for

13: K sub-swarm = Ranking (P)

14: for i =1 to K do

15 while g < G4, do

16: Select leader

17: Update velocity

18: Update position

19: Mutation

20: f2, f3, f4 =Test ConvLSTM network (selected chan-
nels)

21: Update Fitness (fa, f3, f1)

22: if 1(X!) > I(pt L) then

23: PBesti = Pi

24: end if

25: g=g+1

26: Save solutions in LA;

27: Learning strategy

28:  end while
29: EA =EA U LA;
30: end for

of the six situations for all the subjects. At the end of the
six situations, Self Assessment Manikin (SAM) is used to rate
how a subject felt during stimulation.

Fig. 6: Placement of EEG electrodes in DASPS

B. Experiments on the DASPS Dataset

The classification results of DASPS dataset with RCAE
and with optimization algorithms, are summarized in Table
II. With the help of optimization, the numbers of channels are

TABLE II: DASPS: Accuracy, Sensitivity and Specificity for
the selected EEG channels

Method #NB Accuracy (%) Sensitivity (%) Specificity (%)
RCAE 14 90.70 89.10 96.83
13 89.01 80.06 92.80
13 88.95 77.96 93.63
BMOPSO 12 88.95 81.22 92.26
12 88.71 76.89 93.50
12 88.68 79.46 91.50
11 89.64 78.87 93.47
12 89.28 83.29 91.65
NSGAII 10 87.80 79.48 92.45
10 87.17 80.38 90.96
9 86.50 76.00 91.27
9 90.25 80.39 93.47
7 89.34 75.58 93.73
BMaOPSO 10 89.10 79.82 91.99
11 88.74 74.99 93.81
8 88.29 75.26 92.34

reduced and hence less number of the channel are required
for the analysis. The classifier RCAE with full channel (14)
provides 90.70% classification accuracy; whereas, BMOPSO,
NSGAII and proposed BMaOPSO provides 89.01%, 89.64%
and 90.25% accuracy respectively. Further, the classification
accuracy obtained with the help of the proposed algorithm is a
very close approximation with the accuracy of non-optimized
RCAE. The BMOPSO provides 89.01% with 13 channels
and NSGAII provides 89.64% with 11 channels, whereas the
BMaOPSO gives 90.25% accuracy with only 9 channels.

1) Interpretation of Dominant Channels in DASPS dataset:
The biological significance of the selected channels for each
optimization algorithms are given in Table III.

Figure 7 indicates the selected optimal channels using
BMOSPO, NSGAII and the proposed BMaOPSO. In addition,
the distribution of solutions (the number of selected channels
with the corresponding accuracy) are presented in Figure 8.

The optimization algorithms provide similar channels in-
cluding 6 channels: AF3, P8, T8, FC6, F4, F8. This is an
indication of the fact that the selected channels correspond
to the brain region related to emotions. Accordingly, we find
that the EEG channels related to emotions are distributed in
the front: AF3 F4 and F8; the central: FC6; the temporal: T8;
and the parietal: P8.

C. Experiments on the DEAP Dataset

For DEAP database, we have verified the proposed method
on valence and arousal labels, respectively. The Performances
evaluation of channels selected with different algorithms algo-
rithm are presented in Table IV. For each compared algorithm,
we present the EEG channels combination for the first five
optimal solution in the Pareto front.

For valence emotion, the RCAE achieves 69.09% clas-
sification accuracy with 32 channels. whereas BMOPSO,
NSGAII and proposed BMaOPSO provides 67.82%, 68.90%
and 69.47% accuracy respectively. It is observed that the best
accuracy for valence and arousal is obtained with the proposed
BMaOPSO.



TABLE III: Qualitative comparative analysis for DASPS dataset

Optimization results

Algorithm | No. | Accuracy | Sensitivity | Specificity Name of channels -
Channels locations
BMOPSO 13 89.01 80.06 92.80 AF3, F7, F3, FC5, P7, O1, 02, P8, T8, FC6, F4, F8, AF4 Frontal: AF3, F4, F8
NSGAII 11 89.64 78.87 93.47 AF3, F/, F3, T7, OI, 02, P8, T8, FC6, F4, F8 AF3, P8, T8, | Central: FC6
AF3, FC5, T7, P8, TS, FC6, F4, F8 Temporal: T8
BMaOPSO | 9| 9025 80.39 9347 FCG.F4, F8, 'AF4' Parictal: P8

(a) BMaOPSO

(b) NSGAII

(c) BMaOPSO

Fig. 7: DASPS: Channel Selection: (a) using BMOPSO (13 Channels) (b) using NSGAII (11 Channels) (C) using BMaOPSO

(9 Channels)

(a) BMaOPSO

(b) NSGAII

(c) BMaOPSO

Fig. 8: DASPS dataset: Accuracy of the selected channels

1) Interpretation of Dominant Channels in DEAP dataset:
The location of optimal EEG channels for valence and arousal
emotions using the BMOPSO, NSGAII and the proposed
method is illustrated in Figure 9 and 10, respectively. In fact,
the recognition of valence and arousal emotion involves a
different combination of EEG channels as detailed in Table
V.

It is observed that the BMaOPSO selects 13 channels for
valence: AF3, F3, FC5, FC1, CP1, P3, PO3, O1, Oz, AF4,
FCé6, C4, P4 and 15 channels for arousal: Fp1, AF3, F3, F7,
FCS5, FC1, P3, P7, PO3, Pz, Fp2, FC2, Cz, T8, P4 to obtain
an accuracy which is higher than its competitors. Even that the
obtained accuracy of arousal and valence are slightly higher
than the classification accuracy of all channels, the channel
number falls down to 1/2 of the full channels (32 channels),
and it leads to reduce the computational complexity.

D. Experiments on the SEED Dataset

The generated results of the competitive algorithms, includ-
ing BMOPSO, NSGAII and BMaOPSO over the SEED dataset
are presented in Table VII. With this dataset that contain 62
channels, the classifier obtains 87.19% accuracy. With the
optimization algorithms, we achieves a higher accuracy with
less channel number. The BMOPSO obtains 89.60% with
42 channels; the NSGAII obtains 88.75% with 39 channels;
the BMaOPSO obtains 89.04% with 40 channels. By using
the proposed method, the accuracy is slightly lower than the
BMOPSO algorithm but with lower channel number.

1) Interpretation of Dominant Channels in SEED dataset:
The significance of selected channels using optimization al-
gorithms is presented in Table VI. In addition, the Figure 13
indicates the distribution of selected optimal channels over the
different region of brain.

It is observed that the number of EEG channels can be
reduced from 62 to 42, 39 and 42 channel by using BMOPSO,




(a) BMaOPSO (b) NSGAII

Fig. 9: DEAP Valence: Channel Selection: (a) using BMOPSO (16 Channels) (b) using NSGAII (23 Channels) (C) using
BMaOPSO (13 Channels)

(a) BMaOPSO (b) NSGAII (c) BMaOPSO
Fig. 10: DEAP Arousal: Channel Selection: (a) using BMOPSO (18 Channels) (b) using NSGAII (16 Channels) (C) using

BMaOPSO (15 Channels)

(a) BMaOPSO (b) NSGAII (c) BMaOPSO

Fig. 11: DAEP Valence: Accuracy of the selected channels



sssss

sssss

(a) BMaOPSO (b) NSGAII (c) BMaOPSO

Fig. 12: DAEP Arousal: Accuracy of the selected channels
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(a) BMOPSO (b) NSGAII (c) BMaOPSO

Fig. 13: SEED: Channel Selection: (a) using BMOPSO (42 Channels) (b) using NSGAII (39 Channels) (C) using BMaOPSO
(40 Channels)

TABLE IV: DEAP: Accuracy, Sensitivity and Specificity for  NSGATTI and BMaOPSO respectively.

the selected EEG channels The results indicate that the compared algorithms selected

Label | Method #NB | Accuracy (%) | Sensitivity (%) | Specificity(%) | similar channels: FPZ, ¥P2, ¥7, F3, FZ, F4, F6, FC2 C4,
RCAE 32 69.09 75.02 61.36 S
8 16 6757 TA01 38 50 CP1, CPZ, P5, PZ, PO5, PO3, POZ that distributed over
2 24 6738 7172 5395 the frontal, central, parietal and occiptal regions. In fact, the
~ | BMOPSO [ 16 6737 7553 5653 . Lo
T 6715 7550 5600 selected channels related to the region which is most affected
21 67.02 76.58 54.46 by positive, neutral, and negative emotions.
23 68.90 76.22 59.06 .
27 63.82 7450 61,30 However, the proposed method ensures a higher accuracy
NSGAI 16 | 66.79 71.57 60.59 with fewer channels.The fact that each channel has a large
0 66.25 79.01 3983 : .
g 573 459 3410 amount of data, the reducing of channel number can effectively
g gg'% ;:'é; gg-‘l‘g reduce the computational complexity. After the channel selec-
BMaOPSO [ 15 68.99 7434 61.08 tion, only the channels that related to emotions were retained,
> 67.82 72.95 61.09 leading to reduce the amount of data to analyze.
9 67.67 7575 5726
— | RCAE 32 82.58% 80.66% 82.58%
Z 18 82.44 85.79 80.57
z 20 8239 8822 79.09
BMOPSO | 23 8235 85.50 80.58 VI. CONCLUSION AND FUTURE WORK
16 8232 86.94 79.77
16 8229 87.80 79.22
}2 g;g‘ll ggzi Sgﬁ} In this paper a BMaOPSO has been proposed for the
NSGAI 15 5756 5737 7980 emotion recognition using a new learning model denoted as
?5 g;ig gg;g ;g;g RCAE: Recurrent Convolutional Autoencode. The proposed
5 $3.94 33.86 .43 algorithm provides the required channels to detect the emotion.
BMAOPSO }g gigé 3863-5557 ggg? The BMaOPSO is compared with traditional algorithms as
al B .03, . .
5 .44 8394 3145 BMOPSO and NSGAII algorithms over three well known
16 82.40 84.62 81.20 datasets: DASPS, DEAP and SEED. Experimentally, the pro-

posed algorithm improves its efficiency to detect the emotion
with fewer channel number.



TABLE V: Qualitative comparative analysis for DEAP dataset

. e s e ] . ] Optimization results
Algorithm No. Accuracy Sensitivity Specitivity Name of channels Channls Tocations
8 | BMOPSO 16 67.82 74.94 58.50 Fpl, FC5, T7, CP5, CP1, P7, Ol, Pz, Fp2, AF4, FC2, C4, T8, CP6, | AF3, F3 irlg;tallé FCS. AF4
b PO4, 02 FC5, CP1 T i
S [ NSGATI 23 68.90 76.22 59.06 Fpl, AF3, F3, F7, FC53, C3, CP3, CPI, P3, PO3, AF4, Fz, F4, F8, FC6, | AF4, C4 Central:
FC2, C4, T8, CP6, CP2, P4, P8, O2 CP1, C4
BMaOPSO 13 69.47 74.11 63.45 AF3, F3, FC5, FC1, CPI, P3, PO3, OI, Oz, AF4, FC6, C4, P4
S BMOPSO 18 82.44 85.79 80.57 AF3, F3, F7, FCS5, FC1, T7, CP1, Ol, Oz, Pz, AF4, FC2, C4, CP6, CP2,
2] AF3, F3 Frontal:
§ P8, PO4, O2 FC5, FC1 AF3, F3, FC5, FC1
< | NSGAIL 16 82.84 86.38 80.81 AF3, F3, FC5, FC1, CP5, Fp2, AF4, F8, FC6, Cz, C4, T8, P4, P8, PO4, ? T ?
02
BMaOPSO 15 82.94 83.86 82.43 Fpl, AF3, F3, F7, FC5, FCI1, P3, P7, PO3, Pz, Fp2, FC2, Cz, T8, P4
TABLE VI: Qualitative comparative analysis for SEED dataset
. L - N Optimization results
Algorithm No. Accuracy Sensitivity Specitivity Name of channels “hanncls Tocations
Frontal:
BMOPSO 42 89.60 85.34 92.82 FP1, FPZ, FP2, F1, F3, F1, FZ, F4, F6, FT7, FCS, FC3, FC2, FC4, FC6, | FPZ, FP2, F7, F3, FPZ, FP2,F7,F3
C5, C3, Cl, CZ, C4, C6, TP, CP5, CP1, CPZ, CP2, CP6, P5, P1, PZ, | FZ, F4, F6, FC2 FZ, F4, F6
P2, P4, P6, PO7, PO5, PO3,POZ,PO6, O1, 0Z,02,CB2 C4, CP1, CPZ, P5,
NSGAII 39 88.75 84.32 92.21 FPZ, FP2, AF3, F7, F3, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC2, FCo6, PZ, POS, PO3, POZ gét;tracl;‘
T7, C3, C4, T8, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, PZ, ’
P6, P8, PO5, PO3, POZ, PO8, CB1, Ol1, 02
Parietal:
BMaOPSO | 40 89.04 84.52 92.53 FP1, FPZ, FP2, ¥7, F5, F3, FZ, F2, F4, F6, F8, FC1, FCZ, FC2, CP1, CPZ
FC4, FT8, C5, C1, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP4, P7, P5, PZ
P5, PZ, P2, P4, P8, PO7, PO5, PO3, POZ, PO6, POS, CB2
Occipital:
POS5, PO3, POZ
ol | :
& 2 08¢ g
(a) BMOPSO (b) NSGAII (c) BMaOPSO

TABLE VII: SEED: Accuracy, Sensitivity and Specificity for

Fig. 14: SEED: Accuracy of the selected channels
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