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Abstract—As one of the most common brain diseases, epilepsy
affects nearly 1% of all human beings. Patients’ central nervous
systems are destroyed chronically, hardly differentiable from a
normal state until epileptic seizures happen, and hence difficult to
prevent. About 65 million people worldwide have epilepsy, more
than the combined number of people diagnosed with Parkinson’s
disease, Alzheimer’s disease and multiple sclerosis. It is practical
and feasible to establish a reliable seizure prediction system.
When the electroencephalogram signal is predicted to be pre-
ictal, the system sends an alarm to remind patients, family
members or doctors to take drug treatments, electrical stimu-
lation or physical measures to prevent seizures. We introduce
three transfer learning algorithms, including TCA, JDA and
EasyTL, together with two ensemble learning algorithms, RF
and GDBT, to predict seizures, constructing a seizure prediction
system framework based on transfer learning algorithms. Three
experiments are conducted consecutively on a public dataset: 1)
single patient seizure prediction experiment reaches prediction
of 95.18%; 2) cross-patient seizure prediction without transfer
learning results in prediction accuracy of 32.71%. Compared with
Experiment I, Experiment II confirmed that the individual differ-
ences of EEG among patients would lead to a significant decline
in prediction performance; 3) cross-patient seizure prediction
with transfer learning. After using transfer learning algorithms,
the prediction accuracy was improved from 32.71% to 57.29%,
demonstrating the effectiveness of our proposed approach and
confirming the strength of transfer learning methods cross patient
seizure prediction task.

Index Terms—Seizure Prediction, Transfer Learning, Elec-
troencephalogram, Interictal, Preictal, Ensemble Learning

I. INTRODUCTION

Electroencephalogram (EEG) is a kind of time series signal
collected by monitoring specific brain electromagnetic fields,
which can be utilized to directly reflect brain activities [1].
Scalp electroencephalogram (SEEG) is the most commonly
used and most economical non-invasive brain wave detection
method [2]. Through placing electrodes on specific positions
on the scalp, the microvolt level signals generated by synchro-
nized neuronal activity in the brain are collected. Currently, in
clinical practice, visual inspection and manual EEG annotation
are the gold standards for epilepsy detection. However, the
large amount of tedious work brings a heavy burden to pro-
fessionals, and the accuracy of detection excessively depends
on the subjective judgment of the examiner. Therefore, it is
important to combine the expertise of computer scientist and
medical scientist to build a predictive model for automatic
epilepsy detection and seizure prevention. When the predictive
model indicates signs of seizures, the patient only needs to

take key medications for prevention. Obviously, these models
require highly reliable algorithms to function.

With the help of automatic predictive model, it is prac-
tical and feasible to establish a reliable seizure prediction
system. When the EEG signal is predicted to be pre-ictal, the
system sends an alarm to remind patients, family members
or doctors to take drug treatment, electrical stimulation or
physical measures. This system is able to ensure the safety
of patients, reduce the rate of accidental sudden unexpected
death in epilepsy patients (SUDEP) [3], and allow patients
to take drugs only when needed, avoiding drug dependence.
In addition, it can prevent patients from engaging in high-
risk activities (such as driving and high-altitude work) during
seizures, and minimize the damage caused by seizures to
themselves or others, so as to improve the quality of life of
patients with epilepsy. The significance of seizure prediction
is as follows: 1) reduce the workload of doctors and assist
in epilepsy treatment; 2) reduce the pain caused by epilepsy
and reduce the accidental mortality and drug dependence of
patients with epilepsy; 3) it is beneficial fir patients’ health
and quality of life.

However, there are still some problems with currently avail-
able methods in the literature on epileptic seizure prediction,
which have not been well resolved.

1) There are few studies on the recognition of pre-ictal
state. A large number of studies only focus on the
recognition and detection of ictal state or inter-ictal
state [1], but research rarely on the recognition of pre-
ictal state. If accurate identification of the pre-ictal
state can be achieved, doctors and patients could take
certain preventive measures before epileptic seizures and
reduce the harm to patients, which is more realistic than
traditional seizure detection [4].

2) Good results cannot be obtained when performing cross-
patient testing. Traditional methods on epilepsy predic-
tion focus on the within-patient scenario, that its train
set and test set generally contain the EEG signals of the
same patient. When the model performs cross-patient
testing, i.e., the EEG signals in the test set are collected
from a new patient that the model has never seen in the
train set, the prediction accuracy (ACC) of the model
will drop sharply. Since epilepsy is a very unstable
phenomenon, EEG signals during epileptic seizures is
very complex and often shows different distributional
characteristics in different patients. Even for the same
patient, EEG signals from different trials would often



vary significantly. Therefore, transfer learning methods
must be adopted to handle cross-patient seizure predic-
tion problem.

Because of the data scarcity issue in the field of seizure
prediction, data from other patients must be utilized for
the model to learn additional information. However, without
specific transfer learning measures, such data would often have
negative influence on the model because of high discrepancy
of EEG signals between patients. Our research motivation
is to reuse existing patients’ data, decrease the discrepancy
and realize cross-patient seizure prediction. In order to reduce
differences and improve prediction accuracy, we introduce
three transfer learning methods, including TCA [5], JDA
[6] and EasyTL [7], together with two ensemble learning
algorithms, RF [8] and GDBT [9], to predict seizures. We
propose a novel method to improve the effectiveness of cross-
patient seizure prediction and realize the reuse of different
patients’ data.

The remainder of this paper is organized as follows: Sec-
tion II introduces related work on seizure prediction and
transfer learning methods. Section III describes the seizure
prediction system framework and the algorithms used. Section
IV presents the experiments and evaluates the performance
of seizure prediction before and after introducing transfer
learning algorithms. Finally, Section V draws conclusions.

II. RELATED WORK

In this section, we briefly introduce previous works on EEG-
based seizure prediction and transfer learning.

A. Seizure Prediction

A great influential review published in 2007 stated that
there is not enough evidence to prove that seizures can be
predicted [4]. But since then, some progress has been made
in the field. A clinical trial in 2013 showed that it is possible
to implant devices in human patients to predict seizures in
real time [10]. A review article on epilepsy prediction in 2018
also proposed a framework for online real-time prediction of
seizures and summarized the progress in this field, including
EEG databases, seizure prediction competitions, the prospec-
tive trial mentioned and advances in our understanding of the
mechanisms of seizures [11].

There are many seizure databases and associated studies,
international organization has an unprecedented effort on
building publicly available databases. One is the EPILEPSIAE
database that included non-continuous data sets [12]. The other
is the IEEG.org database [13], [14], which has provided the
basic framework to process data on GitHub. There are also
other database like Bonn dataset [15] and CHB-MIT dataset
[16] to help predict seizures.

According to the different location of EEG signal collection,
datasets can be divided into scalp electroencephalogram data
(sEEG) and intracranial electroencephalogram data (iEEG).
In many cases, non overlapping windows are more suitable
for predicting seizures, and researchers use them to predict
seizures. The datasets commonly used in seizure prediction in
recent years are listed in Table 1.

In 2014 and 2016, large international competitions about
seizure prediction were held on standard database and com-
petitors were asked to use advanced algorithms to solve pre-
diction problems. In 2014, the competition named American
Epilepsy Society Seizure Prediction Challenge [17], [18], the
competition database involved intracranial EEG data from
human and dogs, there are a total of 942 seizures recorded
over 500 days. Intracranial EEG was recorded from dogs with
naturally occurring epilepsy using an ambulatory monitoring
system. All EEG signals were segmented into 10 min segments
of pre-ictal data and inter-ictal data used as train set for
their algorithm, they also provided unlabeled 10 min segments
for testing. In 2016, contest named Melbourne University
AES/MathWorks/NIH Seizure Prediction [10] also used iEEG
data, which collected from three patients about 1100 seizures
records over 1300 days. The patients’ seizures were hard to
predict with existing algorithms.

It is worth mentioning that the two competitions both used
AUC metric as the evaluation of seizure prediction algorithms,
in 2014 the AUC value of the first place is 0.84 (nature 2018-
39), and had strong generalization ability. When reused in a
larger dataset, its algorithm performance decreased only 8%.
In 2016 contest, the top AUC value is 0.81.

TABLE 1
SEVERAL COMMON INTERNATIONAL SEIZURE EEG DATASETS

Name Patient  Seizure Data  Sample Time
Num Num Type Rate(Hz) Length(h)

Freiburg [19] 21 87 iEEG 256 708

CHB-MIT [16] 22 163 sEEG 256 644

Bonn [15] 10 100 iEEG 256 708

Kagele [17] 2(human) 48 %EEG 5000 21.3

5(dog) 100 iEEG 400 658

NICU [20] 79 460 sEEG 256 97.4

Barcelona [21] 5 3750  iEEG 512 83

Researchers have proposed different machine learning meth-
ods to predict seizures in recent years. Generally they can
be divided into two categories, one is the traditional process,
including preprocessing, feature extraction, classification and
postprocessing four steps in total, and the other use convolu-
tional neural network (CNN) to predict.

1) Preprocessing. Preprocessing of EEG is often conducted

in various ways to remove noise and select channels in
EEG signals [2]. Butterworth filter, wavelet transform,
and Fourier transform are often used to get a better
signal to noise ratio (SNR) when preprocessing. Com-
mon spatial filtering (CSP) can also reduce the SNR by
selecting channels to decrease the computational cost
[22].

2) Feature Extraction. Univariate and bivariate features,
linear and non-linear features are extracted to classify
pre-ictal and inter-ictal signals. They can be divided
into four measures [4], including univariate linear mea-
sures, univariate non-linear measures, bivariate linear
measures, and bivariate non-linear measures. Statistical
features in time domain include standard deviation,
mean, skewness, median, quartile, and so on. Spectral



features in frequency domain include variational coef-
ficients and spectral skewness. For different types of
signals, the performance of extraction features is also
different. Spectral features have better performance in
scalp EEG data, but the statistical features perform well
in both scalp EEG and iEEG data. When the train data is
sufficient, convolutional neural network is a good feature
extraction method.

3) Classification. Support vector machine is a widely used
EEG classification method. There are also some other
classifiers can be used, such as k-nearest neighbor,
random forest and ensemble learning classifier.

4) Postprocessing. Researchers have proposed many meth-
ods for seizure prediction but only a few have done
statistical validation [2]. The postprocessing methods
include k-fold cross validation, and moving average filter
[23].

With the development of deep learning, CNN is more
commonly used and has obtained better sensitivity in scalp
EEG and intracranial EEG datasets. In a scalp EEG dataset,
Truong et al. [24] and Hussein et al. [25] have applied CNN
and obtained 81.2% and 93% sensitivity, respectively. Khan et
al. [3] have applied CNN to scalp EEG dataset and classified
it with 87.8% sensitivity and 85.8% specificity. As for iEEG
datasets, there are also some researchers who used CNN. Yu et
al. [26] used PCA and CNN to extract features in iEEG signals
and got 87.7% sensitivity. Acharya et al. [27] applied CNN to
extract features and classify which achieved 73.9% sensitivity.
However, due to the differences among patients, it is worth
noticing that although CNN has achieved good prediction
results in single patient, it cannot obtain good results in cross-
patient prediction and the prediction performance will be poor.
It is therefore necessary to introduce transfer learning for
cross-patient prediction.

B. Transfer Learning

Transfer learning uses the knowledge learned in the existing
environment and applies it in the new environment to complete
learning tasks, so it can solve the inconsistent distribution
of train set and test set [5]. Researchers proposed transfer
learning algorithms to use rich labeled data in the source
domain to build a reliable classifier for the target domain
which has a few or even no labeled data.

Due to the individual differences between patients and
complexity of EEG signals, it is difficult to establish a general
model to predict seizures for many specific patients. This
leads to long-term data collection and processing for each
patient, which is time-consuming and labor-consuming. By
introducing transfer learning algorithms, the prediction model
based on one patient who has sufficient data and labels can be
reused in the prediction of another patient with less data and
classification labels. Therefore, the study of seizure prediction
based on transfer learning algorithms is of great significance
to improve the health and living standards of epileptic patients
and assist patients in treatment.

Some researchers have applied transfer learning to the
prediction of seizures. Dhulekar et al. [28] present a novel

approach to predicting EEG seizures by cross-learning public
knowledge and using transfer learning in patients’ records,
they also designed a novel transformation to improve the
efficiency of transfer learning. Raghu et al. [29] used transfer
learning to pre-train the network and using SVM to classify
EEG signals. Daoud et al. [30] introduced a semi-supervised
approach based on transfer learning to improve their optimiza-
tion problem which aims to select the most discriminative
features and improve the accuracy of classification and reduce
prediction time.

III. METHODOLOGY
A. Data Preprocessing

In the Kaggle2014 dataset, intracranial EEG data were
collected from human and dogs. There are totally 942 seizures
recorded over 500 days [17], [18]. Intracranial EEG was
recorded from dogs with naturally occurring epilepsy using
an ambulatory monitoring system. All EEG signals were
segmented into 10 min segments of pre-ictal data and inter-
ictal data used as the train set of their algorithm, also with
unlabeled 10 min segments for testing. The sampling rate of
human EEG signal is 5000Hz, of 15 channels. The sampling
rate of dog EEG signal is about 400Hz of 16 channels. The
train data segments are numbered in order, and the test data
are numbered in random order to ensure the generalization
performance.

The time range of train and test data set is from one hour
and five minutes before the seizure to five minutes before
the seizure. On one hand, this division of data can ensure
enough time to alert and inform patients to take measures for
prevention and treatment as soon as possible. On the other
hand, if missed information annotated by epilepsy diagnosis
before seizure, it will not affect the prediction results.

In this work, discrete wavelet transform (DWT) [31] and
low pass filtering are used to remove high-frequency noise,
and the sub-bands obtained by wavelet decomposition are also
used for the following feature extraction.

B. Feature Extraction

The input signal frequency band is 0-128Hz. After 7-level
wavelet decomposition, EEG signals can be divided into seven
different frequency bands, 7 sub-bands are selected for feature
extraction respectively. The extracted features are statistical
features, crossing features and entropy features. Details are
described below.

Calculate n5, n25, n75, n95, mean, median, standard devia-
tion, variance and root mean square, are calculated, totaling 9
statistical features. Zero crossing rate and mean crossing rate
are the times that the signal passes through the baseline y = 0
and the average level y = u per unit time respectively. En-
tropy features are characteristic measure of signal complexity.
Approximate Entropy (ApEn) is a measure of data regularity.
Irregular time series correspond to higher non negative ApEn
values, while regular and predictable time series signals cor-
respond to lower ApEn values. Sample entropy (SampEn) is
a method to measure self-similarity. Compared with ApEn,
SampEn is an improved parameter, and seizures will lead to
the reduction of these two entropy parameters [32].



C. Classification Algorithms

An important branch of machine learning is ensemble
learning. Ensemble learning is to build many base learners,
and then combine these learners to increase the generalization
performance of the model and get better performance in
machine learning tasks.

1) RF: Breiman proposed the idea of Random Forest (RF),
which is a kind of bagging ensemble learning [8]. It takes
the decision tree as the base learner, and constructs the
bagging ensemble learner. When selecting the optimal partition
attribute of decision tree, the random attribute selection is
carried out. The traditional decision tree is to select an optimal
attribute in the set of attributes of the current node and do
continuous division. In RF, the strategy of selecting the optimal
partition attribute for each internal node of the base decision
tree is different from the traditional decision tree. In the set
with d attributes in the current node, k attributes are randomly
selected to generate a subset of the original set, and then
select an optimal attribute in the new subset as the basis for
branching.

2) GBDT: Gradient Boosting Decision Tree (GBDT) clas-
sifier uses the boosting and gradient boosting algorithm which
aims to promote a weak learner to a strong learner. AdaBoost
[33] is one of the boosting algorithms. Shortly after AdaBoost
was proposed, Friedman, a machine learning and statistician,
explained from a statistical perspective and explained that
AdaBoost was actually based on an additive model to optimize
the exponential loss function similar to the Newton iterative
method. Inspired by this, Friedman [9] proposed the idea of
gradient boosting. Gradient boosting decision tree is to use
the decision tree as a weak learner to fit the gradient in
the process of gradient boosting, then fuse it into the whole
gradient boosting process.

D. Transfer Learning Algorithms

In this work, we apply transfer learning methods to achieve
cross-patient seizure prediction, which meets the treatment
requirements in more realistic scenarios. Below, we introduce
three methods adopted in this work.

1) Transfer Component Analysis (TCA): TCA [5] proposed
to learn a transformation that decreases the marginal distribu-
tions discrepancy between the source domain and the target
domain. The main idea of TCA is to use a dimension reduction
method to re-extract the information in the sample, so that
the new information not only reduces the distance between
two domains, but also maintains the integrity of the main
information.

TCA method uses Maximum Mean Discrepancy (MMD)
as the measurement of domain discrepancy [34]. So, below
we first introduces MMD. Borgwardt et al. [35] proposed
the MMD as a relative standard of comparing distributions
based on Reproducing Kernel Hilbert Space (RKHS). Let
X = {z1,..,xn,} and Y = {y1,...,Yn,} be two varible
sets with different distributions P and (). Then the distance
between P and () are defined by MMD as follows:

1 & 1 &
MMD (X,Y) o ;qb(xl) . ;m%) (1)
where H is a RKHS. By minimizing this quantity, a nonlinear
mapping function ¢ from sample space x to H can be found
marked as y — H.

Let X € R"*? denote the input space and ¥ € R
denote the output space, where d is the dimension of the
input features and n is the number of samples. We con-
sider the unsupervised DA scenario that we have access to
labeled samples of the source domain D; = { X, Ys}, where
{Xs,Ys} = {(x5,97)};=,, and unlabeled samples of the target
domain D; = {X,}, where {X;} = {x!}]*,. Typically, there
exists difference between distributions of source and target
domains, i.e. P(X,,Ys) # P(X:,Y:), P(X,) # P(X:). Let
Xs U X: = X be the input transformed from source domain,
target domain and combined domain, respectively. Our task is
to predict the unknown outputs {y!}.

For transfer learning problems,MMD is used as a measure-
ment, and the distance between source domain D, and D; can
be calculated as follows:
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H
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It is worth noticing that TCA only considers the marginal
distributions discrepancy, the setting is that P(X,) # Q(Xy),
but P(Ys | ¢ (Xs)) = P(Yr | ¢ (Xr)), that is to say they
only consider the marginal distributions discrepancy P(X;) #
Q(X}) between the source and target domain.

Pan et al. [5] proposed to transform the nonlinear transfor-
mation ¢ to a kernel learning problem. By using the kernel
trick, such as k(z;,z;) = ¢(x;) ¢(z;), the distance can be
written as follows:

Dist (X, Xy) = tr(KL), 3)
where
Ks S Ks t
K= ’ ’ 4
[ Kio Kip } @

Then, by virtue of the parametric kernel map for unseen
patterns, the empirical means of source domain and target
domain distance can be rewritten as follows:

Dist (X, X;) = tr (W KLKW) (5)

Finally, the learning problem for transfer learning using
kernel trick can be simplified to the following form:

miny  tr (WTW) + ptr (WTKLKW) ©)
st. WTKHEKW =1

2) Joint Distribution Adaptation (JDA): JDA [6] is pro-
posed to minimize the joint distribution discrepancy of input
data and the label between source and target domains. That
is, conditional distribution adaptation is introduced based on
TCA to adapt both marginal and conditional distributions
discrepancy, and construct new feature representation which is
effective for reducing distribution difference. In most transfer



learning tasks, the labels of target domain are unknown. JDA
use the pseudo label strategy, by virtue of the classifier trained
in the source domain to help with the classification tasks in
the target domain. Then gradually repeat iteration to improve
the accuracy of the pseudo labels. Given marked auxiliary
domain,the source domain Ds; = {(x1,y1),..., (Tn.,Yn)}
and unlabeled target domain D; = {(@ni1,...,Zntm)}-
It is necessary to meet these conditions, firstly the feature
space and the label space of two domains should be same,
F, = F,,Ys; = Y;. Secondly, the marginal distribution and
conditional distribution are both different: P(X;) # Q(Xy),
but P(Ys | ¢(Xs)) # P (Yr | ¢ (Xr)). IDA method study
a feature representation 7" and classification model f to min-
imize both marginal and conditional distributions discrepancy
at the same time. JDA modifies MMD to measure the distance
between the class-conditional distributions, and the distance
between source domain D, and D; can be calculated as
follows:
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The kernel method is also introduced to solve the distance
minimization problem:
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E. Seizure Prediction System Framework

Traditional prediction model for seizure prediction includes
four parts: data preprocessing, feature extration, seizure state
classification and postprocessing. Based on the traditional
model, this work proposed EEG-Based transfer learning
seizure prediction system framework which is shown in Fig. 1.
In our framework, the architecture consists of five parts,
preprocessing, feature extraction, feature transformation, clas-
sification, and alarm generation. Firstly, The raw signal is
transformed into a relatively pure signal by removing high-
frequency noise through low-pass filtering and wavelet trans-
form. Then, eleven different features are extracted from the
seven sub-bands obtained by wavelet decomposition, including
time domain, frequency domain and nonlinear features. The
train set and test set come from different patients. After feature
extraction, feature vectors are not directly input the classifier.
Instead, features are aligned from source domain and target
domain through transfer learning methods including TCA,
JDA, etc., and obtain the aligned two new feature vectors X ;
and Xt', the new feature vectors are then input into GBDT and
RF classifiers. Transfer learning methods reduce the difference
by aligning the feature space of the source domain and the
target domain. In this way, the model trained in the source
domain can be reused in the target domain to realize the
knowledge transformation.
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Fig. 1. EEG-based transfer learning seizure prediction system framework

IV. EXPERIMENTS

This section presents three experiments and their results.
The main contents are as follows: experiment settings, experi-
mental results, performance verification, and model effective-
ness.

A. Experiment settings

In all experiments, we choose two patients as the data for
train and test named Dog, and Dogs from the original EEG
records. In Dogo records, the inter-ictal EEG signals have
500 sets, but the pre-ictal EEG signals only have 42 sets. In
Dogs records, there are 1440 inter-ictal sets and 72 pre-ictal
sets. In order to solve data imbalance problem, we randomly
select two kinds of data with the ratio of 4 : 1. Totally, for
Dogs we select 210 sets of which 168 are inter-ictal and 42
are pre-ictal, for Dogs we select 360 sets of which 288 are
inter-ictal and 72 are pre-ictal. Every set has 10 minutes data
segments, the sample rate is 400Hz and we select 5s as the
time window’s length. Therefore, the total number of samples
of two patients are 25200 and 43200, respectively. Our task
is a binary classification task of inter-ictal and pre-ictal. The
settings in experiment are listed in Table II.

TABLE II
PARAMETER AND EXPERIMENT SETTINGS OF OUR TASKS
Parameters Settings
Database Kaggle Competition database 2016
Patients Doga, Dogs
Sampling rate 400Hz
Channels 16
Window length Ss
Sample number Doga: 25200
Dogs: 43200
Per record length 10 minutes
Feature dimension 1x 1344
Classifiers GBDT, RF

B. Experiment I: Single patient seizure prediction based on
RF and GBDT

Our task is a binary classification task of inter-ictal and pre-
ictal. The allocation ratios of train and test set are 80% and



20%. We repeat the experiment ten times and calculate the
average prediction accuracy on the test set. The experiment
results on two patients are listed in Table III.

TABLE III
SINGLE PATIENT SEIZURE PREDICTION ACCURACY BASED ON GBDT AND
RF
Dog2 Dog3

GBDT RF GBDT RF
1 0.9417 0.8835 | 0.9341 0.9340
2 0.9826 0.9082 | 0.9213 0.8839
3 0.9518 0.9277 | 0.9192 0.9091

4 0.9643 0.9732 | 0.92 0.9
5 0.9417 0.9320 | 0.949 0.9388
6 0.9438 0.9551 | 0.8804 0.9347
7 0.9036  0.9157 | 0.9681 0.9255

8 0.9467  0.92 091 0.91
9 0.9479  0.9270 | 0.9135 0.8858
10 0.9574 0.9255 | 0.9271 0.9375
Average | 0.9428 0.9268 | 0.9243 0.9159

The single patient experiment results using the data of Dogs
and Dogs can be found in Table III. Using ensemble learner
GBDT and RF to classify inter-ictal and pre-ictal states can
achieve high accuracy. The average classification accuracy of
GBDT in Dog, is more than 0.94 and more than 0.92 in Dogs;
The average accuracy of RF in Dogo is more than 0.92 and
more than 0.91 in Dogs.

We also draw the confusion matrix of inter-ictal and pre-
ictal classification in Fig. 2.

GBDT Confusion Matrix of Dog2 RF confusion matrix of Dog2
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Fig. 2. The confusion matrix of binary classification task with GBDT and
RF ensemble learners. (a) GBDT learner for Dogz; (b) RF learner for Doga;
(c) GBDT learner for Dogs; (d) RF learner for Dogs

C. Experiment II: Cross-patient seizure prediction (baseline
of transfer learning methods)

Three evolutional indexes of cross-patient seizure predic-
tion experiment are calculated and listed in Table IV. When

predicting seizures cross patients, because of the discrepancy
between patients Dog2 and Dog3, the evolutional indexes
ACC, TPR, and TNR are all decreasing a lot. The reason
for the poor performance is that the train data have a negative
influence on the test data, so binary classification probability
will even be lower than the random prediction probability
0.5. An improved method based on transfer learning will be
proposed in Experiment III.

TABLE IV
CROSS-PATIENT SEIZURE PREDICTION ACCURACY BASED ON GBDT AND
RF

Dog2—Dog3
GBDT RF
0.4604 0.3271
0.6667 0.2833
0.2542  0.3708

Dog3—Dog2
GBDT RF
0.4583 0.3438
0.6542  0.2583
0.2625 0.4292

ACC
TPR
TNR

D. Experiment III: Cross-patient seizure prediction based on
Transfer Learning

When the data of source domain and target domain come
from different individuals respectively, i.e., the source domain
is Dog2 and the target domain is Dog3, or the source domain
is Dog3 and the target domain is Dog2. As the results shown
in Experiment II, only using the traditional machine learning
classifier will inevitably lead to bad performance, and per-
formed worse than single patient prediction in Experiment I.
So we introduce transfer learning methods. Before putting the
feature vectors into classifiers, the feature vectors from source
and target domain are aligned using the transfer learning
methods, mapped to a new common feature space, and then the
two newly generated feature vectors X ; and X; can decrease
the difference between source and target domain distribution
and improve the accuracy of cross-patient classification. The
comparison of prediction results before and after introducing
transfer learning methods (TCA, JDA, EasyTL [7]) is shown
in Table V.

TABLE V
CROSS-PATIENT SEIZURE PREDICTION ACCURACIES BEFORE AND AFTER
INTRODUCING TRANSFER LEARNING METHODS

After TL
TCA  TCA
+GBDT + RF JDA EasyTL
0.5354 0.5167 0.525 0.5229
0.5729 0.5583 0.5125 0.5646
0.5542 0.5375 0.5188 0.5438

Before TL

GBDT RF

0.4604 0.3271
0.4583 0.3438
0.4594 0.3355

Dog2—Dog3
Dog3—Dog2

Average

Besides the prediction accuracy (ACC), we select other three
indexes to evaluate the experiment results, including sensitivity
(TPR), specificity (TNR), and false positive rate (FPR). Their
calculation formulas are as follows:

TP +TN
ACC = TP+TN+FP+FN ©)
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The values of four evolutional indexes are calculated by
above formulas and listed in Table VI.

TABLE VI
THE VALUES OF FOUR EVOLUTIONAL INDEXES FOR THREE EXPERIMENT
BEFORE AND AFTER INTRODUCING TRANSFER LEARNING METHODS

Experiment] | ExperimentIl ExperimentIII
GBDT RF |GBDT RF Tea - TeA
+GBDT + RF JDA EasyTL
ACC |0.9518 0.9277|0.4583 0.3271| 0.5729 0.5583 0.525 0.5646
TPR [ 0.9348 0.913 |0.6542 0.2833| 0.6958 0.65 0.1625 0.8375
TNR | 0.9730 0.9459|0.2625 0.3708 | 0.45 0.4667 0.8875 0.2917
FPR |0.0230 0.0455(0.3458 0.7167 | 0.3042 0.35 0.8375 0.1625

We analyze the results of Table VI:

1) Experiment I. This experiment is about single patient
seizure prediction, the accuracy based on GBDT and
RF are 0.9518 and 0.9277, respectively. Besides, the
sensitivity and specificity are better than cross-patient
experiments, FRP is lower than cross-patient experi-
ments, which is less than 0.04. Because of the discrep-
ancy between patients, when predicting cross patients,
the data from one patient has a negative influence on
the other patient’s seizure prediction. It is also the
motivation of this work to decrease the discrepancy and
realize cross-patient seizure prediction.

2) Experiment II. In order to identify the effectiveness of
transfer learning methods, we carry out some control
experiments. The experiment setting is cross-patient but
does not introduce any transfer learning methods. It can
be seen from the experimental results that the results
are poor when it comes to cross patient prediction
corresponding to the result of Experiment II in Table VI.

3) Experiment III. In order to reduce differences and im-
prove prediction accuracy, we introduce transfer learning
methods. In summary, we use four transfer learning
methods: 1) TCA transfer learning methods and GBDT
classifier named TCA+GBDT in Table VI; 2) TCA trans-
fer learning methods and RF classifier named TCA+RF
in Table VI; 3) JDA transfer learning method; 4) EasyTL
transfer learning method. Among the four methods,
TCA+GBDT has the best results. Compared with Ex-
perimentll, the accuracy of TCA + GBDT method can
be improved from 32.71% to 57.29% and the sensitivity
is improved from 28.33% to 69.58%, also the accuracy
of TCA + RF method can be improved from 32.71% to
55.83%, which is slightly lower than TCA+GBDT. The
two methods also improves the specificity by a small

margin, with the improvement rate of more than 20%,
realizing large improvement relatively.

4) Biased Results. For JDA and EasyTL, they have ’biased’
promotion. Although they both improve the prediction
accuracy, the prediction sensitivity of JDA method is
lower than that of no transfer method, and its false
positive rate is high. The accuracy is improved by
specificity, but our optimization goal is to improve
sensitivity and specificity at the same time, also to
reduce the false positive rate. As for EasyTL method, its
specificity is lower. Therefore, JDA and EasyTL are both
biased approach, but they still have some improvement
in accuracy, the improvement rates of ACC are 54.64%
and 62.10%, respectively.

V. CONCLUSION

A reliable seizure prediction system is significant for practi-
cal application. This can ensure the safety of patients, reduce
the rate of accidental sudden unexpected death in epilepsy
patients, and allow patients to take drugs only when needed,
avoiding drug dependence. So we introduce three transfer
learning and two ensemble learning algorithms to predict
seizures, and construct s framework of seizure prediction
system based on transfer learning algorithms. Experiment
results on a public dataset demonstrated the effectiveness of
our proposed approach, confirming that introducing transfer
learning methods has a good effect on the cross-patient seizure
prediction task.
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