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Abstract—We are interested in rigorously analyzing the ro-
bustness of parallel and distributed Evolutionary Algorithms
(EAs) to noise. This is a report in which we describe our results
towards such objective. As a first step, we report experimental
results on some models of noise, and three parallel EAs solving
a pseudo-boolean black-box noisy optimization problem. We
consider posterior additive noise. That is the noise occurring
in the fitness function. As algorithms, we consider mutation-
based and crossover-based algorithms implemented in the single
receiver model. We focus on the average optimization time to
find the optimum of the considered problem to characterize the
performances.

Our experimental analysis indicates some advantages of the
majority vote crossover based parallel EA to deal with the
considered noisy problem compared with the uniform crossover
operator and mutation only based parallel EA. Nevertheless, our
results indicate some chances to make uniform and mutation-
only based parallel EAs resilient to noise, compared to majority
vote crossover, by allowing more computation power. Also, our
results indicate that, at some noise levels, the optimization time
of the considered parallel EA using a majority vote crossover
with a large number of parents matches the optimization time
of this algorithm under no noise.

Index Terms—Parallel Evolutionary Algorithms, Pseudo-
Boolean Black-Box Optimization, Robustness.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are a generic class of ran-
domized heuristics that mimic natural evolution, applied to
different computational problems, mainly combinatorial opti-
mization problems. They come with the advantage of requiring
little about the problem at hand, being derivative-free, and
can offer satisfactory results in a reasonable amount of time.
Another advantage of these algorithms is their algorithmic
structure, which makes devising parallel versions of these
algorithms quite straightforward. That is, for example, by
evaluating a population in parallel. Parallel EAs (p-EAs) are
practical and was shown competitive results to many difficult
optimization problems [ALN13].

Applying EAs to real-life optimization problems require,
often, dealing with different sources of uncertainty [JB05]. Jin
and Branke, [JB05], detailed four main causes and sources
of uncertainty that may face an EA. The first source is the
noise that occurs during solutions evaluation (e.g., simulation-
based optimization). The second source of uncertainty is the
design variables that can be modified. The third source is

scenarios when the fitness is not computed but approximated
(e.g., surrogate-based optimization). The fourth source is when
the fitness function is time-dependent. In this work, we focus
on the first and the second sources of uncertainty.

To the best of our knowledge, parallel and distributed EAs
are not yet considered for theoretical analysis when tackling
noisy problems. Though there exists a growing and active body
of literature on performances of EAs under noise [Sud21],
[GK16], it is limited to the serial case. Moreover, many
problems where noise occurs are based on some simulation,
which may be expensive to compute. Thus, it is reasonable to
aim for understanding p-EAs for noisy problems so that they
can be applied wisely in such situations. Another motivation to
study the behavior of these algorithms under noise (the prior
noise model) is situations of software or hardware failures or
attacks that can alter the candidate solutions p-EAs evolves.
This can be of high interest if one aims at providing EAs based
optimization software in a distributed environment, where the
reliability of provided solutions would be critical.

Our work towards understanding p-EAs performances under
noise can be summarized in the following points.

• We study the optimization time performances of a p-
EA based on the single receiver model solving a noisy
problem.

• We consider the posterior noise model based on the
Gaussian distribution with 0 mean and variance σ2.

• We compare the impact of using recombination vs. mu-
tation only operators in p-EAs.

• We show that the majority vote under specific tuning and
up to some noise limit can make the performances of the
single receiver algorithm matches its performances under
no noise. We also characterize the noise level after which
the single receiver model fails to solve the optimization
problem under the given budget.

The rest of this report is organized as fellow. We first review
the literature of EAs for noisy problems and state of the
art of theoretical analysis of p-EAs in section II. Section III
presents the considered p-EA and the optimization problem.
The experimental protocol and results are reported in section
IV. Section V closes the report by laying out the next step
towards our initial objective.



II. RELATED WORK

In this section, we review existing work related to the
performances of EAs under noise. We also review the existing
literature related to theoretical work on p-EAs.

A. Robustness of EAs to Noise

Research on understanding and improving the performances
of EAs in a noisy environment has been carried since the early
days of evolutionary computation [FG88]. Though there is a
considerable amount of empirical study on this subject, we
focus our review on mathematical work. The review by Jin
and Branke [JB05], though quite dated, gives a good overview
of the field. Two main noise models have been considered
by theoreticians when analyzing EAs. The additive noise
[FKKS15] and the prior model [Dro04]. We shall note that
other forms of noise are also considered. For example, Dang
and Lehre [DL16] studied the case of partial computation of
the fitness function and its impact on the optimization time of
a non-elitist EA.

Gieben and Kotzing [GK16] analyzed a set single-solution
and population-based EAs under the prior noise. They proved
that (1+1)-EA solves the noisy OneMax under the prior noise,
in which one bit is flipped with a probability q in Θ(nlog(n))
if q is O(1/n). This time become polynomial poly(n) when
q is O(log(n)/n), and exponential 2ω(log(n)) when q ∈
ω(log(n)/n). The authors also considered the (µ + 1)-EA.
They showed that this algorithm takes O(µnlog(n)) on the
noisy OneMax, given that µ > 12log(15n)/q. To improve the
performance of EA under noise, one can resample the solution
multiple times and average the fitness values, [QYT+18],
[FKQS17]. Qian et al. [QYT+18] proved that resampling when
used within a (1+1)-EA yield a polynomial optimization time
O(poly(n)), given a sample size m = d nσ2

log(n)e and a noise
level 1 ≤ σ2 ∈ poly(n).

Regarding the posterior noise case, Gieben and Kotzing
[GK16] analyzed EAs under the additive guassian distribution
noise. They proved that (1 + 1)-EA solves the noisy OneMax
in O(nlog(n)), when the σ2 ≤ 1/(4log(n)). Friedrich et
al. [FKKS15] analyzed the runtime of (µ + 1)-EA and an
estimation of distribution algorithm, the compact GA (cGA)
under the additive Gaussian noise. They proved a polynomial
time of the cGA O(Kσ2

√
nlog(Kn)) when the number of

considered parents K in the recombination is ω(σ2
√
nlog(n)),

and an exponential time O(2ω(log(n))) of the mutation only
(µ+ 1)-EA.

B. Parallelism Models for EAs

The parallelism of an EA can be achieved in different
ways [AT02]. We briefly present common approaches used
to implement parallel EA. The first one relies on the Master-
Worker Model [DGP06]. In this model, a central computing
unit, called Master, executes all the algorithm steps, except
computing the fitness of solutions. The latter became the
charge of other computing units, called Workers. This model
is used in scenarios where computing the solutions’ quality
is expensive. The second approach proceeds by dividing the

population into sub-populations. This model is called the
Island Model [DFF+19]. Each computing unit runs an EA
and exchanges selected solutions with its neighbors in this
model. A replacement mechanism is then triggered to select
solutions to consider for replacement on each node. The most
used technique for solution selection for communication is
elitist selection. This model is usually implemented using the
message passing protocol. Another model, similar to the island
model, is the single receiver [FKK+16] considered in this
work and detailed in section III-A.

C. Theoretical Analysis of Parallel EAs

While the empirical work on p-EAs started in the early
nineties of the past century [ZK93], the first rigorous the-
oretical analysis goes back to [LS10]. Since then, p-EAs
have started to attract growing interest from theoreticians.
The considered research questions range from the impact
of the considered parallel design (the topology of p-EAs)
[FK18], [MS14], [MS15], to characterizing the optimization
time of p-EAs under some specific setting [LS14b], [LW17],
to providing general techniques for mathematical analysis of
p-EAs [BLS14], [BLS15], [LS19].

For the impact of the considered topology and communi-
cation, in [FK18], authors studied the impact of distributed
EAs topologies on the diversity of solutions. They found that
a ring topology with probabilistic migration helps the (1+1)-
EA running on λ island not to get stuck in local optima.
They proved a O(nrlog2(n)) bound on this algorithm on the
Forkr problem, under some conditions on the number of
islands λ. In contrast, a complete topology deteriorates the
performance of the algorithm. In another study, Mambrini and
Sudholt [MS14], [MS15] analyzed the (1+1)-EA running on λ
island using adaptive strategies that control the communication
intervals. Given the fitness of the local population, the island
decreases or increases its communication interval. The ratio-
nale is to speed up the spread of fittest individuals. This was
proven to improve the upper bounds on the communication
complexity. In [LS14b], [LS10], Lässig and Sudholt adapted
the fitness level technique [Weg03] to prove general upper
bounds on the runtime of elitist p-EAs ((1+1)-EA) running on
regular graphs (i.e., ring, 2D and 3D torus), using synchronous
communications. They proved a bound of O(n) on (1+1)-EA
to solve the OneMax if the ring, torus, hypercube, or complete
topologies are considered. The communication cost (number
of messages exchanged) is deduced from these topologies
and provided. The proposed method is intended to be general
and applicable to other parallel optimization heuristics. This
technique was extended by [LS19] to any parallel unbiased
optimization algorithms that evaluate different solutions in
parallel. In [DFF+19], authors derived bounds on the runtime
and the communication complexity of island-based p-EAs
running random-like communication topologies.

Besides pseudo-boolean linear functions, in [LS14a] au-
thors analyzed the runtime of a parallel (1 + λ)-EA to find
solutions for the shortest paths and Eulerian cycles. They
illustrated scenarios where the parallel algorithms’ runtime



varies drastically depending on how the communication is
tuned. Specifically, the algorithm may have logarithmic or
exponential speed depending on the communication.

III. ALGORITHMS AND OPTIMIZATION BENCHMARK

In this section, we detail considered p-EA and the optimiza-
tion problem.

A. A Parallel Evolutionary Algorithm

We are interested in analyzing the performance of p-EAs for
noisy problems. We consider the following model for p-EA.
Given a topology G = (V,E) which abstracts computation
resources (e.g., cluster of CPUs, multi-core CPU), each node
v ∈ V will run a (1 + 1)-EA detailed in the Algorithm 1.
This is a simple EA using a mutation rate of 1

n over bit-
strings. The best solution between the parent and the newly
generated solution is kept for the next generation. Among
the V nodes, we will consider a node r ⊂ V that will
execute a genetic algorithm or an EA (without crossover)
as detailed in Algorithm 3. The r node will go through the
following steps. After receiving a number k ≥ 1 of solutions
from senders, sampled uniformly at random, r will apply a
crossover between received solutions. The crossover operators
we consider are the majority vote and the uniform crossovers.
The latter is the classical uniform crossover, in which a bit is
selected from one of the two parents with a probability 1

2 . We
abbreviate this genetic operator by unif x. The other genetic
operator we consider is detailed in Algorithm 2, the majority
vote crossover. This operator builds an offspring from k parent
by setting the bit at some position i to the 1 if it is the most
recurrent among k parent at position i, else it is set to 0. This
operator is abbreviated as mv x. The obtained solution will
then go through a selection phase. When the crossover is not
used, that is a mutation only EA, after receiving k solution
from parents, selected u.a.r, the best among the received and
the receiver’s solution is kept for the next generation. We name
this operator mut.

Algorithm 1: (1 + 1)-EA for optimizing a function f
as executed on each node, except the receiver.

1 Initialize x u.a.r.;
2 while not stop condition do
3 y ← x;
4 flip each bit of y independently with prob. 1/n;
5 if f(y) ≥ f(x) then
6 x← y;

The communication step, sending and receiving of solutions
between nodes and the receiver, happens periodically after a
number of rounds, τ . The algorithm stops when the global
optimum is reached or when a number of function evaluations
are exhausted. We analyzed the robustness of this algorithm
as a function of different parameters, namely the noise level,
topology size, communication effort, problem size.

Algorithm 2: Majority Vote Crossover (mv x)

1 X ← {x1, x2, . . . , xk};
2 y ← (0, 0, . . . , 0);
3 for i ∈ [n] do
4 O ← 0; Z ← 0;
5 for j ∈ [k] do
6 if xj [i] == 1 then
7 O ← O + 1;

8 else
9 Z ← Z + 1;

10 if O > Z then
11 y[i]← 1;

12 return y;

Algorithm 3: EA with the mv x optimizing a function
f as executed on the receiver node.

1 Initialize x u.a.r.;
2 Vs, V ← {};
3 t← 0;
4 while not stop condition do
5 y ← x;
6 flip each bit of y independently with prob. 1/n;
7 if f(y) ≥ f(x) then
8 x← y;

9 if t ≡ 0 mod τ then
10 V ← sample k nodes u.a.r. for majority vote;
11 Vs ← recieve solutions from V ;
12 z ← mv x(Vs);
13 if f(z) ≥ f(x) then
14 x← z;

15 t← t+ 1;

B. Pseudo-Boolean Noisy Optimization Benchmark

We analyze the considered algorithms on the following
artificial benchmark. This benchmark is constructed based on
the OneMax function. We first detail this function, then detail
the considered noise model.

The OneMax (OM) problem is a linear unimodal pseudo-
boolean function defined as follow. For x ∈ {0, 1}n we define

fOM (x) =

n∑
i=1

xi

to be the fitness of x. Using this function, we will define
a noisy OneMax function to understand the performances and
capacities of Algorithm 3 under noise. We consider the noisy
OneMax function under the following noise models.

The first model defined in equation 1, is the additive noise
model, also known by posterior noise, where we add to the
fitness value of a solution a term, d, sampled from the Gaussian
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Fig. 1. Mean number of rounds as a function of problem size. Topology size
is set to 32, τ = 8. Number of parent for the mut and mv x is 3, and 4 for
unif x. σ2 = 0.8.

distribution with mean 0 and variance σ2. Notice that d can
be sampled from any distribution, not necessarily a Gaussian.

fOM (x) = fOM (x) + d, d ∼ N(0, σ2); (1)

IV. EXPERIMENTAL ANALYSIS

This section reports the experimental protocol followed and
presents results and our analysis.

A. Experimental Protocol

To gain an idea about the performance of Algorithm 3
optimizing the noisy OneMax, we consider the following
experiments and parameters settings. We consider OneMax
instances of size n ∈ {100, 150, 200, . . . , 400} under the
noise model in 1. We experiment with different values of
τ ∈ {1, 2, 4, . . . , 32}, σ2 ∈ {0.0, 0.2, . . . , 4.0} and topology
sizes, m ∈ {4, 8, . . . , 64}. We consider the case of σ2 = 0 to
compare with the scenario of p-EA optimizing the OneMax
function without noise. The stop condition for the considered
algorithms is either finding the (true) optimum solution or

exhausting a budget of dn
3

m
e function evaluation, for the single

receiver p-EA using m node1. Reported results are, mainly, the
mean and the standard deviation of the number of rounds to
hit the optimum, 1n, over 100 independent runs.

B. Experimental Results

a) Average optimization time: To analyze the perfor-
mance of the considered p-EA and genetic operators, we first
plot the mean number of rounds as a function of the problem
size in Fig. 1. Figure indicate an nlog(n) growth of the
optimization time as function of n when the mv x is used,

1We divide by m so our results can be compared as a function of different
topology sizes, given that we are analyzing a fixed budget scenario.
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Fig. 2. Mean number of rounds of the single receiver model as a function of
variance σ2 (in log scale) to hit the optimum of OneMax for n = 100, for
different the three operators. τ = 8. Number of parents is k = 3 for mut and
mv x, and 4 for unif x. Topology size is 32.

while a growth more fast for mut and unif x. Notice also the
factor improvement of the optimization performance gained
by using mv x, over mut and unif x.

b) Performance under Noise: Fig. 2 plots the mean
number of rounds to hit the optimum of Algorithm 3 (and
the standard deviation) as a function of the variance for the
three operators. The figure indicates that adding noise to the
optimization problem increases the average time needed to
find the optimal for all operators. Moreover, the algorithm
stops when the σ2 ≥ 2 without finding the optimum. Also, the
figure indicates exponential growth of the optimization time
for all three algorithms as a function of σ2. However, notice
the slight advantage of using the majority vote over the other
two operators for all noise levels.

To complete the picture of the previous figure, we report
in figure 3 the proportion of successful runs as a function
of noise (σ2) for different topology sizes, when the majority
crossover is used. This figure helps us gain an idea about the
impact of considering more computation power to cope with
a certain level of noise. We observe that at σ2 ≤ 1.0 the
algorithm always finds the global optimum for the problem.
At σ2 = 1.2, we observe that a topology of size 16 always
solves the problem. This is not the case for low topology sizes,
4 or 8. However, surprisingly, a topology of size 16 helps cope
with noise better than a large topology, 32. This is true too,
at noise level σ2 = 1.4. The difference of resilience to noise
is pronounced and remarkable when σ2 = 1.4. At this noise
level, we notice that using topologies of size, 16, 32, makes
the proportion of failed runs around 25%, while 50% and more
than 75% at topologies of size 8, 4, respectively.

c) Impact of Number of Parents: Herein, we are in-
terested in understanding the impact of the mutation and
crossover operators on the optimization time. Fig. 4 plots the
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Fig. 3. Portion of successful runs in function of noise, for different topology
sizes for the majority vote crossover, k = 3. n = 100
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Fig. 4. Mean number of rounds (and standard deviation) as a function of
the number parents used in crossover, or for selection in the mutation only
algorithm. n = 100, τ = 8, σ2 = 0.8, and topology of size 32.

mean number of rounds to find the optimum. Two interesting
points can be retained here. First, mut and unif x perform the
same independently on the number of parents, while consid-
ering more parents for mv x decreases the mean optimization
time. Second, considering more parents in the mv x leads to an
optimization time similar to σ2 = 0.0, (the no noise scenario).
Thus, this indicates that the majority vote crossover would, up
to some noise level, cancel the noise, if a sufficient number
of parents are provided for the crossover.

d) Parallelism parameters: Topology size and Communi-
cation intervals: Figure 5 reports the mean number of rounds
to hit the optimum as a function of topology size for the three
operators. We can see that more computation helps improve
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Fig. 5. Mean number of rounds as a function of topology size. Number
of parent for the mut and mv x is 3, and 4 for unif x. n = 100. τ = 8.
σ2 = 0.8.

the mean optimization time, up to some topology size in the
case of mv x, after which adding more computation resources
does not help reduce the optimization time. This is not the
case when mut and unif x are used. The figure indicates that
using more computation resources lowers, by a factor, the
optimization time.

In figure 6, we report the mean number of rounds as a func-
tion of communication intervals τ . Note that communication
intervals are related to the number of exchanges messages. The
shortest the interval, more messages are exchanged, and hence
the communication effort is considerable. From this figure, we
can note that communication intervals have a little impact on
the mut and unif x performances based on the single receiver
p-EA. This is not the case when the mv x operator is used.
We can see that spacing the communication intervals increase
the mean number of rounds to find the optimum, while short
communication intervals decrease the optimization time.

V. CONCLUSION AND FUTURE WORK

We reported our preliminary results on the robustness of
a p-EA, the single receiver p-EA when optimizing a simple
noisy pseudo-boolean black-box function. We considered the
posterior noise model based on the normal distribution and
studied the performances of three p-EAs, considering mutation
and recombination operators. We also studied the scalability
of the considered p-EA and the influence of communication
intervals on its performance. Overall, the experiments indicate
an advantage of the majority vote crossover-based p-EA over
uniform and mutation-only p-EA to deal with noise, up to
some noise threshold.

As future work, we are interested in proving these results
mathematically and thus generalizing our understanding to
settings unreachable by experiments. Also, analyzing oth-
ers models of p-EAs, and other optimization problems. For
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of parent for the mut and mv x is 3, and 4 for unif x.

instance, considering other decentralized parallelism models
with different communication topologies. Indeed, from our
experimental analysis, we would expect to prove an expected
runtime of O(2poly(σ

2)nlog(n)) for the single receiver model
on the OneMax problem under the additive noise using the
majority vote crossover.
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