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Abstract—Drowsy driving is a major cause of traffic accidents
and has become a serious threat to our daily life. Therefore, it is
important to make accurate driver drowsiness estimation during
driving for safety. This can be achieved by monitoring drivers’
electroencephalogram (EEG) signals through a brain-computer
interface system. However, due to individual differences, most
existing approaches need to collect a large amount of labeled
subject-specific data for calibration, which is labor-intensive and
user-unfriendly. To solve this problem, domain adaptation (DA)
has been proposed to make use of auxiliary subjects’ labeled
data to train a model for a new subject, with few or even no
subject-specific calibration data. This paper proposes a novel
deep adversarial DA approach for offline cross-subject drowsiness
estimation, without using any labeled subject-specific calibration
data. It utilizes a discrepancy distance to measure the distribution
discrepancy in regression. A publicly available dataset, SEED-
VIG, was used to evaluate the performance of our proposed
approach. Experiment results demonstrated that it outperformed
two state-of-the-art approaches.
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I. INTRODUCTION

Driving safety is of vital significance with the rapid devel-
opment and frequent use of the vehicle. However, the high
incidence of traffic accidents has been a serious threat to
our daily life. Drowsy driving is one of the major causes
[1], which only follows to alcohol, speeding and inattention
[2]. It is reported that there were at least 396,000 traffic
accidents caused by drowsy driving from 2011 to 2015 in
the USA [3]. When drivers are in states of high drowsiness,
their abilities of quick response and accurate judgement to
the road emergencies deteriorate and fall into high risk of
car crashes [4]. Therefore, it is essential to make accurate
drowsiness estimation during driving for early-warning and
safety.

During the past decades, a variety of approaches have been
proposed to estimate driver drowsiness level, which can be
roughly categorized into two kinds: contactless-based sensor
detections and wearable-based sensor detections [5]. The for-
mer mainly adopt the computer vision techniques to analyze
the drivers’ facial activities and then infer the drowsiness level
[6]. Some contactless-based sensor sensors such as cameras
are applied to monitoring drivers. But these approaches are
sensitive to the changes and impacts of surroundings. The later

mainly use wearable sensors to collect drivers’ physiological
signals, e.g., electroencephalogram (EEG) [7], electrocardiog-
raphy (ECG) [8], electrooculogram (EOG) [9], etc, and then
analyze the signals for drowsiness estimation. The whole
process is implemented based on the brain-computer interface
(BCI) system, which is a kind of communication system that
directly builds a way between human brains and computers
[10].

BClI-based approaches have be prevailing for drowsiness
estimation [11]-[13]. Among the various signals in BClIs,
EEG is a kind of frequently used time series signal by
monitoring specific brain electromagnetic fields, which is a re-
liable measurement of human psychophysiological and mental
states [14]-[16]. The last several years have witnessed great
progress and a variety of works in EEG-based driver drowsi-
ness estimation [6], [17]. Most of the proposed approaches
only focus on classification by classifying driver states into
some predefined categories [18]. Actually, compared with the
arbitrary classification that whether the driver is drowsy or not,
it is more meaningful and intuitive if the driving early-warning
system can output continuous values for driver drowsiness
estimation in practice. In this paper, we consider the offline
EEG-based drowsiness estimation and regard it as a standard
regression problem.

In BCI systems, EEG-based driver drowsiness estimation
suffers from high cross-subject variations, which is one of
the major obstacles for real-word BCI applications [19]. Due
to the individual differences, performance of models trained
on the data from one subject is degraded when applied to
another subject. Hence, it is required to collect enough labeled
subject-specific calibration data to tune the model parameters
[5]. However, collecting labeled EEG data is extremely labor-
intensive and user-unfriendly. Many efforts have been tried to
reduce the calibration sessions as much as possible. Domain
adaptation (DA) serves as a promising solution to solve such
a chalilenge, which leverages data and knowledge in some
tasks (usually called source domains) to boost the learning
performance in a different but related task (usually called
target domain) [20]. The cross-domain distribution discrepancy
is minimized during training in DA and models learn from
more transferable knowledge [21]. Therefore, with a little or
even no calibration data of the target domain, models trained



on labeled source samples can still perform well on target
domain.

In the field of DA, deep DA approaches are more prevailing
than traditional DA approaches due to the powerful feature
representation of deep networks. The deep DA approaches
generally embed DA techniques into deep network training
[22] and have gain significant performance improvement. Deep
adversarial DA currently is one of the dominant branches in
deep DA [23]. Its basic idea is to diminish the distribution
discrepancy between the source and target domains in a two-
player game. The whole process is implemented by integrating
adversarial learning [24], inspired by the principle of gener-
ative adversarial networks (GANs) [25]. The deep networks
are trained to generate domain-invariant features for better
knowledge transfer. However, to our best knowledge, deep
adversarial DA approaches for offline cross-subject drowsiness
estimation have not been fully explored and there only exist
a few works. In [18], Li et al. used two proposed deep
adversarial DA approaches, domain adversarial neural network
(DANN) [24] and adversarial discriminative domain adapta-
tion (ADDA) [26], to estimate drivers’ fatigue level. In [9],
Ma et al. extended DANN into domain generalization scenario
and then proposed a novel adversarial network structure called
domain residual network for driver drowsiness estimation.
However, most of the proposed deep adversarial DA ap-
proaches are specifically designed for classification, including
DANN, ADDA, and etc. While some can be modified for
regression, it is not theoretically supportive and often failed
in practice.

To adapt to regression problems for offline drowsiness
estimation, we propose a novel deep adversarial DA approach
based on discrepancy distance. The discrepancy distance can
be used for measuring the distribution discrepancy in re-
gression [27]. In our proposed approach, the deep network
architecture consists of two regressors and a feature extractor.
For the two regressors, one is a task-specific regressor for
final estimation, and the other one acts as an adversarial
regressor that likes the discriminator in GAN for adversarial
learning. During the training process, the adversarial regressor
and the feature extractor are trained in an adversarial manner
to minimize the discrepancy distance across domains. Then
domain-invariant feature representations are generated for the
task-specific regressor, which is trained for final predictions.
Additionally, it should be noticed that no labeled subject-
specific calibration data is required from the target domain
during the training process.

The remainder of this paper is organized as follows: Sec-
tion II introduces related work on EEG-based drowsiness
estimation and deep adversarial DA. Section III describes
the learning framework and training steps of our proposed
approach. Section IV presents the experiments results and
evaluates the performance of our proposed approach. Finally,
Section V draws the conclusions.

II. RELATED WORK

In this section, we briefly introduce previous works on EEG-
based drowsiness estimation and deep adversarial DA.

A. EEG-Based Drowsiness Estimation

Among various physiological signals, EEG is reported to be
a reliable measurement of the transition between wakefulness
and sleep in many studies because it can directly reflect the
human brain state and activity [28]-[30]. Furthermore, accord-
ing to [31], EEG has natural potential for fatigue detection.
It has been proved that the spectral dynamics of EEG from
the posterior brain regions are closely related with the decline
of drowsiness level [32]. It has also been demonstrated that
the EEG signals from this region can be used for drowsiness
classification with great accuracy [30].

There were many works that the power spectrum of EEG
was used for driver vigilance estimation in many works [33].
In [34], Wu et al. proposed a domain adaptation approach
by model fusion for online drowsiness estimation, which
only requires little labeled subject-specific calibration data.
In [13], by integrating fuzzy sets with domain adaptation, a
novel online weighted adaptation regularization algorithm for
regression was proposed for drowsiness estimation based on
the power spectrum of EEG. In [28], a multimodal approach
was proposed to estimate driver drowsiness level using EEG
and Forehead EOG. In [5], Cui et al. utilized feature weighting
to learn the importance of different features, and adopted
episodic training for domain generalization based on the power
spectrum of EEG.

In this paper, we establish an offline cross-subject drowsi-
ness estimation model based on the power spectrum of EEG
signals without any labeled subject-specific calibration data of
target subjects. We consider the drowsiness estimation as a
regression problem, which is more meaningful in practice.

B. Deep Adversarial Domain Adaptation

Deep adversarial DA is now one of the most prevailing
branches in the field of DA. The basic idea is to match
feature distributions by embedding adversarial learning into
the training process of deep neural networks, motivated by
the idea of GANs [25].

Specifically, DANN first adopted adversarial learning by
introducing the domain discriminator to generate domain-
invariant feature representations, and the whole training can
be easily optimized through a simple gradient reversal layer
(GRL) [24]. Based on the adversarial learning framework of
DANN, Tzeng et al. [26] designed ADDA approach using
the GAN-based adversarial loss. Unlike that source and target
domains shared a common feature extractor in DANN, there
were two separate feature extractors for source and target
domains respectively in ADDA. Lone et al [22] proposed
the conditional domain adversarial network, where multilinear
conditioning was used to capture the cross-covariance between
feature representations and classifier predictions. Saito et al.



[35] proposed a novel adversarial training strategy, i.e. Max-
imum Classifier Discrepancy (MCD) that maximizes the dis-
crepancy between the predictions of two task-specific classifier
and simultaneously trains the feature extractor to minimize the
discrepancy. Based on MCD, Li et al. [36] further proposed the
joint adversarial domain adaptation approach. In this approach,
both the class-wise and domain-wise distributions were jointly
matched between source and target domains in a unified
adversarial learning framework.

Although there have been plenty of deep adversarial DA
approaches, most of them can only be applied to classification.
And it is difficult to generalize them to regression due to
the lack of theory support. For instance, H-divergence is for
the 0-1 loss of classification, which is optimized in DANN .
Additionally, the theoretical insight of MCD is the mini-max
optimization problem of H{ A’H-divergence, which is measured
as the discrepancy between two classifiers’ predictions. To
adapt to the regression problem, we propose a novel deep ad-
versarial DA based on discrepancy distance. The discrepancy
distance is a kind of distribution discrepancy metric based on
arbitrary loss functions, such as mean square error (MSE) loss
for regression [27]. Therefore, the discrepancy distance can be
used for measuring the distribution discrepancy in regression
and the experiment results verified its the effectiveness.

[II. METHODOLOGY

In this section, we first introduce the problem setting
and notation. Then we review the discrepancy distance and
define discrepancy loss correspondingly. Finally, we describe
the learning framework and training steps of our proposed
approach in detail.

A. Problem Setting and Notation

Let X € R"¥9 denote the input space and ¥ € R
denote the output space, where d is the dimension of the
input features and n is the number of samples. We con-
sider the unsupervised DA scenario that we have access to
labeled samples of the source domain D, = {X,Y;}, where
{Xs, Y} = {(x5,v7)};=,, and unlabeled samples of the target
domain D, = {X,}, where {X;} = {x!}"*,. Typically, there
exist difference between distributions of source and target
domains, i.e. P(X;,Y;) # P(X4, V), P(Xs) # P(X:). And
it is the cross-domain distribution discrepancy that leads to
performance degradation when the models trained on source
domains are applied on target domains. Therefore, our goal is
to learn a label function f : X — Y which can generalize
well on target domains by utilizing deep adversarial DA.

Additionally, we denote a loss function L : Y x Y — R,.
For any two functions h, R : X - Y and any distribution
D over X, we denote by Lp(h,h') the expected loss of h(z)
and k' () as shown in (1). L can be the MSE loss used for
regression.

L(h(z), h (x)) (D

B. Discrepancy Distance and Discrepancy Loss

A key problem for DA is how to measure the distri-
bution discrepancy between the source and target domains.
Many distribution discrepancy metrics have been proposed
for classification with theoretical support. However, most of
them cannot be directly used for regression. To adapt to
regression problems, we utilize the distribution discrepancy
metric proposed in [27], named discrepancy distance. It can be
used for measuring the distribution discrepancy in regression.
The definition is given below.

Definition 1. Given a hypothesis set / and a loss function
L, the discrepancy distance between two distributions P and
Q@ over X is defined by:

disc(P,Q) = max |Lp(h',h)— Lq(h',h) )
h,h" €H
The discrepancy distance is symmetric by definition and
holds the triangle inequality for any loss function L [27].
In particular, L can be the MSE loss, which is commonly
used in regression. And it has been proved that P = () when
disc(P,Q) = 0 [27].

However, it is generally difficult to calculate the empirical
discrepancy distance because it is difficult to find a maximum
value over the hypothesis set H. Therefore, we introduce the
discrepancy loss to approximate the empirical discrepancy
distance. The definition of discrepancy loss is given as follows.

Definition 2. Given two hypotheses i and ' for prediction,
the discrepancy loss between them over two distributions P
and @ is defined by:

Laise(h,h') = |Lp (R, h) — Lo(h', h) 3)

The discrepancy distance can be approximated by maximiz-
ing the discrepancy loss over the whole hypothesis space
‘H. Therefore, minimizing the discrepancy distance can be
equivalently regarded as a min-max optimization problem
of the discrepancy loss, which will be applied and solved
in our proposed approach by utilizing adversarial learning
techniques.

C. Learning Framework

The learning framework of our proposed approach is shown
in Fig. 1. In our proposed approach, the network architecture
consists of three parts: a feature extractor Gy, an adversar-
ial regressor G4y, and a task-specific regressor Gy. Gadw
and Gy are trained in an adversarial manner to minimize
the discrepancy distance across source and target domains.
Motivated by the adversarial training introduced in DANN
[24], in our proposed approach, G4, is optimized to maximize
the discrepancy loss to approximate the empirical discrepancy
distance, while Gy is trained to minimize the discrepancy
loss to align the distributions of source and target domains.
With the domain-invariant feature representations generated
from Gy, Gy is trained for the regression task. In addition, it
should be noticed that G, and G4, have the same network



architectures and they are initialized differently to get different
regressors at the beginning of training process. The whole
training procedure is implemented under the adversarial DA
framework.
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Fig. 1. The learning framework of our proposed approach, where G,
Gy and G,q4, are feature generator, task-specific regressor and adversarial
regressor respectively. Go4, and Gy are trained in an adversarial manner
with discrepancy loss. Gy is trained for final label predictions.

We will describe the learning framework of our proposed
approach which is established in three steps.

1) Step 1: First, we train both task-specific regressor G,
and feature extractor Gy to perform well on source samples.
Here we choose the commonly used MSE loss for optimization
of our networks. The optimization objective is given below:

min £ (X,Ys, Gy) “)

Gy,Gy

where:

Ns

LS -Gy (G ) O

S =1

L(Xs,Y;,Gy) =

2) Step 2: In this step, we first fix the parameters of G
and G, and then update the adversarial regressor Guav. Gadv
is trained to maximize the discrepancy loss to approximate
the empirical discrepancy distance. Given that the empirical
discrepancy distance is defined as the supremum over the
whole hypothesis space # according to (2), some bad hy-
potheses in 4 may be chosen during the optimization, which
are irrelevant with learning tasks [37], [38]. To alleviate this
phenomenon, we add the MSE loss for G4, over the source
samples. Therefore, a better G4, Will be chosen under the
localized hypothesis space H, as pointed in [38]. Additionally,
we use the same number of source and target samples to update
R,q, in every iteration. The optimization objective is given as
follows:

minL (X, Ys, Gagw) —

adv

ﬁdisc (Gadv; Gy) (6)

where:

D S (NN HEE))) N )

S

‘C’(Xév 1/33 Gadv -

1=1
‘Cdisc (Gadv7 ) |£DS( ad'm )_EDt (GadvaGy)‘
(®)
ﬁmf*Z Gaav (G1(a9)) = Gy (G5(21)))” )
Lo, = fz ao (G1(2) = Gy (Gy(2D))* (10)

3) Step 3: After the previous training step, we fix the
parameters of the two regressors G, Gaq,. Then the feature
extractor Gy is trained to minimize the discrepancy loss
for generating domain-invariant feature representations. The
optimization objective is given below:

Hcl;in ,Cdisc (Gadv7 Gy) (11)

f

The above three training steps are repeated in our learning
framework using mini-batch gradient descent, and their order
is not important. The complete procedure of our proposed
approach is shown in Algorithm 1.

Algorithm 1: Our Proposed approach

Input: Labeled source samples { X, Y;};
Unlabeled target samples {X;};
Batch size N; Max iteration M.
Output: Feature extractor G 13
Task-specific regressor G;
Adversarial regressor Gy, -

Gy and G 44, have the same network architecture and
they are initialized differently.

while training do

for j =1t M do

Sample a batch {(x§,y5)}Y, from {X;,Y:};

Sample a batch {(x})}Y, from {X;};

Update G, Gy in (4) using gradient descent on
the batch;

Update G4, in (6) using gradient descent on
the batch;

Update Gy in (11) using gradient descent on
the batch;

end
end

IV. EXPERIMENTS

This section presents the experiment results of our proposed
approach in offline EEG-based driver drowsiness estimation.



A. The SEED-VIG Dataset

SEED-VIG is a publicly available drowsiness estimation
dataset' [28] and is used to evaluate the performance of our
proposed approach in this paper. According to [28], driving
experiments were developed based on a simulated reality-
based driving system to collect EEG data. This system consists
of a large LCD screen, a real vehicle and a software controller.
During the experiments, a four-lane highway scene was shown
on the large LCD screen in front of the real vehicle, and sub-
jects were required to drive in the vehicle. Subjects’operations,
including steering, throttle controlling and braking, were mon-
itored by the software.

There were 23 subjects (average age is 23.3 years old, 12
females) participating in the experiments in total. They all
had normal or corrected-to-normal vision. To induce driver
fatigue more easily, all experiments were conducted during
early afternoon or late night. All subjects were required to
drive for two hours and their EEG signals were recorded
using Neuroscan system with a sampling rate of 1000 Hz.
Eye tracking glasses were used to obtain the percentage of
eye closure (PERCLOSS) [39] and the data was labeled based
on PERCLOSS, ranging from 0 (low drowsiness level) to 1
(high drowsiness level). In this paper, we use the EEG signals
recorded from the 11-channel posterior site and the 6-channel
temporal site for drowsiness estimation.

B. Preprocessing and Feature Extraction

The raw EEG signals from temporal and posterior sites were
first filtered by a 1-75 Hz band-pass filter to remove artifacts
and noise, and then downsampled to 200 Hz to reduce the
computational complexity. Then the signals were segmented
by an 8-second non-overlapping time window.

For feature extraction, we computed the average power
spectral density (PSD) in five frequency bands: delta (1-4
Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz), and
gamma (31-50 Hz). We adopted Welch’s method [40] with
Hamming window, 1024 points fast Fourier transform, and
50% overlapping. The PSDs were then converted into dBs
and used as our features. Each feature vector had 17x5= 85
dimensions.

C. Performance Metrics and Baseline Approaches

Since we considered the regression problem in this paper,
the following two metrics were used to evaluate the estima-
tion results: root mean squared error (RMSE) and Pearson
correlation coefficient (CC), which measure the average error
and structural correlation between the estimation values and
ground truth respectively.

Three algorithms were chosen as baseline approaches and
compared with the performance of our proposed approach. We
introduce the baseline approaches briefly below.

Thttp://bemi.sjtu.edu.cn/~seed/downloads.html

1) Deep Neural Network (DNN): DNN was the basic
network in the experiments without any DA techniques. In this
paper, DNN was trained only using labeled source samples
based on MSE loss, without any information from target
domains.

2) Domain Adversarial Neural Network (DANN): DANN
was a typical deep adversarial DA approach proposed in [24].
It consists of three components: a feature extractor G¢, a
task-specific predictor G, and a domain discriminator Gg.
Gy and Gg are both trained in an adversarial manner with
the domain classification loss. After the adversarial training,
domain-invariant feature representations are generated from
G and then used for training G,.

The original DANN approach was designed for classifica-
tion. We modified it for regression by replacing the softmax
layer of G, with a fully connected regression layer with linear
activations, and used MSE instead of cross-entropy as the task
loss function.

3) Adversarial  Discriminative ~ Domain  Adaptation
(ADDA): ADDA was another typical deep adversarial
DA approach proposed in [26], under the basic framework of
DANN. In ADDA, two feature extractors Gys and Gy; and
two task-specific predictor G5 and G, are separately trained
for source and target domains. The training of G¢, and G,
relies only on labeled source samples, while Gf; and the
domain discriminator G4 are optimized with the GAN-based
adversarial loss in an adversarial manner. G, is initialized
from the trained G for the final prediction.

The original DANN approach was also designed for classi-
fication. We generalized G; and G, to regression with the
same operations that we did for DANN.

D. Evaluation Process and Results

We used leave-one-subject-out cross-validation to evaluate
the performance of our proposed approach. In each run, each
subject was used as the target domain once and the rest of the
subjects were treated as source domains.

All the approaches were trained using mini-batch gradient
descent with Adam optimizer, which used batch-size of 128,
learning rate of 2 x 107%, and weight decay of 5 x 1075,
We sampled 20% data from the shuffled source samples as
validation data in early-stopping to alleviate overfitting. The
maximum number of training epochs was set as 200, and the
early-stopping patience was 5 epochs. We repeated all the
approaches five times for each target subject with the same
experiment settings and reported the average performance.

The estimation performance across the 23 subjects is shown
in Fig. 2 and the average values are given in Tabel I. It can
be observed that:

1) Our proposed approach outpeformed DNN, DANN and
ADDA on most of subjects.

2) In traditional deep adversarial DA baseline approaches,
DANN and ADDA only performed slightly better than
DNN. It is because that they are originally designed
for classification and cannot be directly extended to
regression for the lack of theoretical support.



3) Our proposed approach improved the RMSE and the CC
by 13.78% and 12.70% respectively over DNN, which
verified the effectiveness of the discrepancy distance in
DA for regression.
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Fig. 2. Experiment results (a) RMSEs and (b) CCs across the 23 subjects.

TABLE I
AVERAGE RMSES AND CCS ACROSS THE 23 SUBJECTS.

DNN DANN ADDA  Proposed Approach
RMSE | 0.2140 0.2067  0.2048 0.1845
cC 0.7449  0.7506  0.7617 0.8395

V. CONCLUSION

Accurate driver vigilance estimation is important to safety.
In this paper, we consider a more meaningful scenario: drowsi-
ness estimations are provided as continuous values as a stan-
dard regression problem. DA serves as a promising approach
that can save efforts for new subject calibration in EEG-based
BClIs. Therefore, we proposed a novel deep adversarial DA
approach based on the discrepancy distance. The discrepancy
distance can be used for measuring the distribution discrepancy
in regression. Additionally, our proposed approach requires
no labeled subject-specific calibration data of new subjects

for offline cross-subject drowsiness estimation. Experiment
results on a pubic dataset demonstrated the effectiveness of
our proposed approach and that the discrepancy distance is
useful for regression problems in DA.
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