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Abstract—The complexities of endovascular manipulations re-
sult in the difficulties developing human-robot interfaces (HRI)
to maintain natural manipulations of interventionalists. In this
study, a multilayer learning framework is proposed to decode
six typical endovascular manipulations by fusing four types of
natural behavior. Based on the characteristics of behavioral data,
the framework is designed to three layers to decouple ma-
nipulations partly. Six classification-based and three rule-based
fusion algorithms are evaluated for performance comparisons.
Extensive experiments and statistical analysis demonstrate that
the proposed framework can achieve the overall accuracy of
96.90% based on the best three-behavior fusion scheme, much
higher than those on the best single-behavior scheme (92.67%)
and the best two-behavior fusion scheme (95.50%). These hopeful
results indicate the great potential of the framework to facilitate
the future development of novel HRI for endovascular robotics.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of
death all over the world [1]. Endovascular procedures (e.g.,
percutaneous coronary intervention, PCI) are currently primary
therapies for the treatment of CVDs. Despite minor trauma and
short recovery time to patients, exposure to high doses of X-
ray radiation also results in an increased incidence of cancer,
cataracts and other disease to medical staff, which limits their
practical use.

In the past decade, endovascular robotics (Magellan™ [2]
and CorPath GRX [3]) have seen a growing interest in the
treatment of CVDs. Most of them are designed as a mas-
ter/slave control way, not only removing the operators from
radiation source, but also increasing the precision and stability
of tool motions [4]. Despite the increased application of robot-
assisted procedures, the endovascular manipulations in man-
ual procedures (called natural manipulations) have not been
considered in the designs of existing robotic systems. Unlike
conventional bedside techniques, robot-assisted procedures are
implemented via multi-DoF joysticks or navigation buttons [5].
Therefore, endovascular tools are removed from intervention-
alists’ hands, resulting in lack of force feedback and forgoing
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Fig. 1. The description of six endovascular manipulation patterns. (a) Pull
(PH) and Pull (PL). (b) Counterclockwise twist (CT) and clockwise twist
(WT). (c) Push and counterclockwise twist (HC), push and clockwise twist
(HW)

manipulation skill accumulated in conventional procedures.
Although some studies have explored these issues, they are
currently still in the stage of research [6]-[9]. Up to now,
existing endovascular robots are still facing a lot of challenges.
One of the major problems is that natural manipulations can
be hardly learned by robots since it is difficult to implement
the transformation from natural endovascular manipulations
to the ones in robot-assisted procedures [10]. Consequently,
it is very necessary to decode complicated manipulations of
operators for robots to perform corresponding manipulations
in time.

PCI is a typical endovascular procedure implemented by
using guiding catheter, guidewire, balloon/stent catheter etc.
Firstly, a guiding catheter is inserted into radial or femoral
artery and threaded to the appropriate coronary ostium. Then
a guidewire is put into coronary artery through the catheter lu-
men until its tip threads past the stenosis. Next, a balloon/stent
catheter is delivered along the positioned guidewire to the
desired treatment site and inflated to keep the blocked artery
open [11]. Among these steps, guidewire delivery is the most
important and involves more types of manipulation mode than
others. Generally, endovascular manipulations in guidewire
delivery can be categorized to three modes: axial (AX), cir-
cumferential (CF) and combined (CB) [12], [13] (see Fig. 1).
The AX mode includes two opposite-direction patterns: Push



(PH) and Pull (PL) to achieve guidewire advancement and
retraction. By clamping the tool with the thumb and forefinger
of right hand, the PH pattern is implemented via the hand
motion from right to left, while the PL is achieved by the
opposite motion. The CF mode can adjust the orientation of
guidewire tip when encountering with vascular bifurcations. It
also consists of two opposite patterns: counterclockwise twist
(CT) and clockwise twist (WT), which are implemented via
the twisting motion generated by the two fingers. Sometimes,
simultaneous push and twist manipulations are used to adjust
the tool’s position and orientation dynamically. Similarly, push
and counterclockwise twist (HC), push and clockwise twist
(HW) are two patterns of this mode.

Recently, some researchers used natural behaviors (motion
signals from surgeons’ body during surgical procedures) to
analyze surgical manipulations. In [14], the operator’s hand
motion profiles and velocity in endovascular surgery were
collected with an electromagnetic (EM) sensor mounted on
the thumb. Based on these information, typical manipulation
patterns were determined by testing both in vitro phantoms and
commercial simulators. Researchers at Nagoya University also
used EM sensors to acquire hand and wrist motion in endovas-
cular surgery simulation [15]. The collected data, together
with the information from other sensors, were processed to
extract related features for technical skill assessment. In [16],
muscle activity was used to identify surgical manipulations
automatically, as well as to distinguish abnormal ones in real
time. With noninvasive registered electromyography (EMG)
sensors, Villarruel ef al. [17] used muscle activity to design
a robotic surgical system controlled by for remote surgery. Li
et al. [18] analyzed finger motion with 14 custom-made bend
sensors to obtain a comprehensive information and reflect hand
function clinically. Recent studies explored the application
of accelerometers, and the acquired average and maximum
acceleration were obtained for skill assessment [19].

Some others have explored the fusion of multimodal be-
haviors to describe surgical manipulations more accurately
and completely. By using fiber-optic bend sensors and ac-
celerometers, researchers at Imperial College London [20]
developed a data glove to record the operator’s finger motion
and manipulation force in laparoscopic surgery. They analyzed
these behavioral data for optimal sensor selection and surgical
skill assessment. In [21], finger motion and muscle activity
were collected by a data glove and electromyography (EMG)
sensors, respectively. These natural behaviors were applied to
the assessment of manipulation ergonomy in laparoendoscopic
single-site surgery.

Thus far, there are many studies looked at the application
of natural behaviors for skills assessment. We hope that such
behaviors can also be used to decode endovascular manip-
ulations for facilitating the development of novel HRI, but
few studies focused on this issue. Moreover, existing fusion
of two types of natural behaviors still only provides limited
information, which is hardly used in real-time applications.
For more complete information, it is necessary to explore
an appropriate framework to integrate four types of natural
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Fig. 2. Experimental setup. (a) Phantom-based simulator. (b) Coronary
arteries. (c) Acrylic table and glass tube.

behaviors mentioned above. Motivated by that, this research
aims to develop a natural-behavior-based multilayer learning
framework to learn endovascular manipulations of interven-
tionalists for endovascular robots by fusing multimodal natural
behaviors.

The remainder of this paper will introduce the method in
Section II. In Section III, experimental results are presented
and discussed. Finally, we conclude in Section IV.

II. METHODS
A. Data Acquisition

1) Phantom-based simulator: To simulate clinical practice,
a phantom-based simulator (see Fig. 2), including a guid-
ing catheter, medical guidewire, high-definition camera, 3-
D vascular phantom, monitor, acrylic table and glass tube,
is developed for performing endovascular manipulations. The
catheter tip is positioned at the left coronary ostium, and the
guidewire is inserted into the coronary artery through the
lumen of the catheter. The phantom, filled with specialized
oil to substitute for blood, is used to simulate the vascular
system of humans. The camera is placed near the phantom
to simulate X-ray fluoroscopy and provide two-dimensional
(2-D) navigation.

2) Sensor deployment: According to above analysis, hu-
man motion produced by the interventionalist’s body can
be considered as natural behaviors contributing to endovas-
cular manipulations. In this study, we will mainly discuss
hand motion, muscle activity, finger motion and proximal
force. Table I shows sensor deployment for natural behavior
acquisition. The three-dimensional (3-D) position (X, ¥, Z)
acquired from EM sensors are considered as hand motion of
operators. From more specific Fig. 3, surface electrodes of
EMG sensors are placed based on corresponding anatomi-
cal locations. Two fiber-optic bend sensors are mounted on
thumb’s metacarpophalangeal and forefinger’s interphalangeal



TABLE I
SENSORS AND CORRESPONDING ACQUIRED NATURAL BEHAVIORS

Sensor Location Abbr. Behavior
EM Thumb EM; Hand motion
(40 Hz, NDI Inc.) Forefinger EM, (HM)

Biceps brachii EMG,

Triceps brachii EMG,, o
EMG Dorsal interossei ~ EMG Muscle activity
(1500 Hz, Noraxon Inc.) o DI (MA)

Abductor pollicis  EMG .,
brevis

Fiber-optic bend Thumb FOB;  Finger motion
(40 Hz, 5DT) Forefinger FOB. (FM)
Accelerometer Hand back Accele. Proximal force

(1500 Hz, Noraxon Inc.) (PF)

Accelerometer

Fig. 3. Sensor deployment

joint, respectively [22]. The accelerometer’s X-axis is along
the middle finger and a Cartesian space is spun by three axes.

3) Experimental protocol: In data collection, ten interven-
tionalists were recruited. All subjects have right dominant
hands, guaranteeing the consistency between endovascular ma-
nipulations and the simulator. Before data collection, they were
trained to familiar endovascular manipulations on the simula-
tor. The axial mode (PH and PL) was achieved by advancing
and retracting the guidewire between the left coronary ostium
(LCO) and the left anterior descending branch (LADB); The
circumferential mode (CT and WT) was implemented at a
bifurcation of the LADB; The combined mode (HC and HW)
was started at the LCO. Each subject’s manipulation lasted
for five seconds and repeated ten times for a specific pattern.
A short rest (2-3 minutes) between two attempts was allowed
to prevent muscle fatigue. All attempts of each pattern were
started at the consistent posture/gesture of subjects and initial
state of the guidewire, and digital clock signals were used to
control synchronous acquisition of multimodal behaviors.

4) Preprocessing: For data filtering, a notch filter (50 Hz)
and a band-pass filter (10-500 Hz) are used to remove the
noise in muscle activity (EMG signals), while median filters
are employed to remove spurious spikes and outliers for other
behaviors. Due to the different sampling rates, the alignment
between high sampling rate data and the low one is necessary.
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_______________ rTTTT T T T

S - G
HM Classifier 1-1
|

2

|
I
2 i
IS, ¢
X > Classifier 1-2 —>| Fusion I '
3 |
[}
I

MA

s &
PF — Classifier 1-3
—> QO EN

3

S, Is) <
PF = d M — Classifier 2-3

s2 | Classifier 0 »QEN
M —=

|

|

155 e ) D
MA— Classifier 2-2 Fusion H
)

1

1

1

1

i

1S; (&Y D)
MA —+—| Classifier 3-2 Fusion :
KN = a H

FM Classifier 3-3 !

»OEN

1 1o 1oL ]
Preliminary learning layer Individual learning layer Fusion learning layer

Fig. 4. The multilayer learning framework. “EN” enables a block when input
the corresponding trigger signal.

To this end, the mean absolute value of muscle activity is
calculated using a fixed-length EMG data. The sequence length
is the ratio of the two sampling rates (1500 Hz/40 Hz). Simi-
larly, the mean value of proximal force is extracted. For other
behaviors, the filtered data is regarded as the corresponding
feature. Besides, the windowing (200 ms) [23] and overlapping
(75%) [24] technique are adopted. Then the segmented data
are normalized with min-max scaling method, and further
concatenated to a feature vector as an experimental sample.
Thus 970 (each pattern) and 5,820 (six patterns) samples are
obtained from one subject’s manipulations.

B. Multilayer Learning Framework

Section I has mentioned that six endovascular manipulation
patterns can be categorized into three modes. From the pre-
experiments, we found that proximal force only contributes to
the AX and CB modes, while finger motion is only involved
in the CF and CB modes. Hence, manipulation patterns can be
decoupled by making full use of these obvious characteristics.
Specifically, the decoding task can be implemented by classi-
fying three modes at first, and recognizing six patterns in the
specific mode subsequently. To this end, a multilayer learning
framework (see Fig. 4) is designed with three layers: pre-
liminary learning layer, individual learning layer, and fusion
learning layer. The first layer is used to classify AX/CF/CB
for preliminary decoding, and the latter two layers consist
of three blocks for PH/PL, CT/WT, and HC/HW decoding,
respectively.

1) Preliminary learning layer: In this layer, three manipu-
lation modes (AX, CF and CB) are preliminarily decoded by
the classifier 0, whose input is the feature vector concatenated
by proximal force (s}) and finger motion (s3). This procedure



TABLE II
LABELS OF ENDOVASCULAR MANIPULATION MODES AND PATTERNS

Mode Label Pattern Label
T
AX a.007 PH (100000
PL ©, 1,0,0,0, 07
T
CF ©o.Lor T 001000
WT  (0,0,0,1,0,0"
T
CB ©0 nr HC (000010
HW (0,0,0,0,0, DT
can be denoted as
d = ®(s0) n

where d is the preliminary predicted result, a 3-D column
vector representing AX, CF or CB in Table II, ® denotes the
classifier, sg is the concatenated feature vector. As a trigger
signal, the predicted result is further used to activate the
corresponding block in the next layer.

To select the most appropriate preliminary classifier for
this task, six popular classification models, linear discriminant
analysis (LDA), random forest (RF), support vector machine
(SVM), extreme learning machine (ELM), generalized regres-
sion neural networks (GRNN), and back-propagation neural
network (BPNN) are compared.

2) Individual learning layer: In a specific block, multi-
modal behavioral data are processed separately by different
classifiers to obtain individual predictions, representing the
corresponding behavior’s semantic information. Specifically,
this layer can decode PH/PL using classifiers 1-1 to 1-
3, CT/WT using classifiers 2-1 to 2-3, and HC/HW using
classifiers 3-1 to 3-3. This procedure can be denoted as

¢l =Wi(s]), i€ LN, je[L,M] @

where cf denotes the individual predicted probability vector
produced by the individual classifier ¥/ on the feature vector
s]. Both N and M are set to three in the framework.

Similarly, those classifiers adopted in the first layer are also
used as the candidate individual classifiers. For a specific
behavior, the one with the best decoding performance is
selected as the final individual classifier.

3) Fusion learning layer: The individual predicted prob-
ability represents the corresponding behavior’s semantic in-
formation, and describes the possibility that an endovascular
manipulation belongs to a certain pattern. It is probably that
the obtained probabilities may be dissimilar for different
behaviors, and the complementarity among different semantic
information should be fully utilized. By concatenating in-
dividual predicted results, a semantic information vector is
established for this purpose. Subsequently, the vector is then
processed by a fusion algorithm for further decoding. This
procedure can be denoted as

pi =Ti(cl,....cM), i €[1,N] 3)

where p; is the final predicted result, a six-dimensional (6-D)
column vector representing corresponding patterns in Table II,
T'; is the corresponding fusion algorithm.

Above six models are also used in this layer as the
classification-based fusion algorithms. Besides, average rule
(AR), majority voting rule (MVR) and max rule (MR) are
also considered as rule-based fusion algorithms [25]. Different
from the individual learning layer, this layer integrates the
individual predicted probabilities produced by corresponding
individual classifiers.

Due to the individuality of subjects, subject-specific models
are established independently. Firstly, each subject’s data is
divided into three non-overlapping parts: local-training dataset
(40%), fusion-training dataset (40%) and testing dataset
(20%). Then, six preliminary classifiers are trained with
the local-training dataset, and the fusion-training dataset is
used to test them to select the best one. After that, the
preliminary classifier with the highest average accuracy on
all subjects’ data is the SVM model. Next, the local-training
dataset, together with ground truth labels are utilized to build
individual classifiers. For each case in different blocks, the
best one is determined by comparing decoding performance
on the fusion-training dataset. After that, the best individual
classifiers are SVM for HM, RF for MA, GRNN for PF,
and BPNN for FM. Finally, obtained semantic information
from the best individual classifiers are employed to train six
classification-based fusion algorithms (no need for training
rule-based ones). The testing dataset is used to evaluate the
decoding performance of the proposed framework. The hyper-
parameters in some classification models or fusion algorithms
are determined by 4-fold cross validation.

ITI. RESULTS AND DISCUSSIONS
A. Preliminary Learning Schemes

Based on ten subjects’ testing dataset, the average decoding
accuracies obtained from different candidate classification
models are shown in Fig. 5(a). By comparing the results of
different classifiers, the SVM model yields an accuracy of
97.87%, indicating the best decoding performance, which is
consistent with the previous training result. Therefore, this
model is selected as the final preliminary classifier for the
following decoding. Furthermore, the overall result on all
testing data is presented as a confusion matrix [see Fig. 5(b)],
further indicating the detail of manipulation decoding. From
the figure, more than 3826 testing samples of AX are decoded
accurately, achieving a recall of 98.61% and a precision of
98.13%, while only 97.06% of CB samples are decoded
effectively.

B. Individual Learning Schemes

After the above procedure, the testing samples, which
are classified to corresponding modes accurately, are further
processed by candidate individual classifiers in corresponding
blocks. This can further validate the rationality of the selection
of individual classifiers on the fusion-training dataset. For each
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Fig. 5. The results of preliminary learning schemes. (a) The accuracy

achieved by six preliminary classification models. (b) The confusion matrix
based on the SVM model. (Acc.: accuracy, Re.: recall, Pr.: precision. The
number in the top of a cell is the class count, and the bottom one is the
percentage of the count to the total number of testing samples, similarly
hereinafter.)

TABLE III
AVERAGE ACCURACY (%) OF INDIVIDUAL LEARNING SCHEMES

Block Scheme  Best classifier Accuracy
HM SVM 95.82%
PH/PL  MA RF 91.74%
PF GRNN 93.78%
HM SVM 94.76%
CT/WT  MA RF 92.16%
FM BPNN 95.05%
HM SVM 92.91%
HC/HW  MmA RF 91.32%
FM BPNN 93.18%

modality, the best individual classifier and achieved average
accuracy are given in Table III. It can be seen that the
best classifiers on the testing dataset are consistent with the
ones on the fusion-training dataset, demonstrating the previous
selection is reasonable. In each block, the classifier achieved
the best decoding performance for a specific modality is se-
lected for the next multi-behavior fusion. For PH/PL decoding,
the best single-behavior scheme (BSBS) yields an accuracy
of 95.82%, which is obtained by the SVM model using
hand motion (HM). The FM-based BPNN model achieves
the BSMS for both CT/WT decoding (95.05%) and HC/HW
decoding (93.18%). The decoding results of BSBS are shown
in yellow highlighted cells in Table III. By comparing the
decoding results, HM indicates high potential in decoding
PH/PL patterns, and FM outperforms other natural behaviors
in classifying twist-involved manipulations, while MA shows
the poor capability in recognizing endovascular manipulations.

C. Fusion Learning Schemes

In this part, multi-behavior fusion is explored, and nine
candidate fusion algorithms are evaluated on the testing dataset
to find the most advantageous method. The highest aver-
age accuracy of a specific multi-behavior fusion and the

TABLE IV
AVERAGE ACCURACY (%) OF FUSION LEARNING SCHEMES

Block Scheme Best classifier Accuracy
HF-MA SVM 97.57%
PH/PL MA-PF GRNN 95.35%
PF-HM GRNN 98.61%
HM-MA-PF SVM 99.63 %
HM-MA SVM 95.24%
CT/WT MA-FM BPNN 96.29%
FM-HM SVM 97.13%
HM-MA-FM BPNN 98.92 %
HM-MA SVM 95.03%
HC/HW MA-FM BPNN 95.91%
FM-HM RF 96.97 %
HM-MA-FM BPNN 98.46 %

corresponding algorithm are shown in Table IV. It can be
seen that the decoding accuracies of multi-behavior fusion
schemes outrun those of single-behavior schemes. For PH/PL
decoding, the highest accuracy (98.61%) is obtained by the
GRNN fusion model based on PF-HM fusion scheme, which is
determined as the best two-behavior fusion scheme (BWBES).
Similarly, FM-HM fusion scheme achieves the BWBFS for
CT/WT decoding (97.13%) using the SVM model, and also
for HC/HW decoding (96.97%) using the RF model. Form
the table, the best three-behavior fusion schemes (BHBEFS)
outperform corresponding two-behavior fusion and single-
behavior schemes. Specifically, the BHBFS are achieved by
the SVM model for PH/PL decoding (99.63%), the BPNN
model for CT/WT decoding (98.92%) and HC/HW decoding
(98.46%), respectively. The decoding results of BWBFS and
BHBFS are shown in cyan and magenta highlighted cells in
Table IV, respectively.

Fig. 6 further displays the decoding details of nine best
schemes with confusion matrices. Similar to decoding accu-
racy, recall and precision also indicate a continuous upward
trend with the increase in the number of used behaviors. Based
on these confusion matrices, the final decoding accuracies
under different best schemes can be calculated. They are
92.67% for the BSBS, 95.50% for the BWBFS, and 96.90%
for the BHBFS, respectively. These results indicate the ef-
fectiveness of the multilayer learning framework on decoding
endovascular manipulations.

Furthermore, the decoding abilities of different schemes are
also evaluated with Fj-score, which is the harmonic average
of recall and precision. In this study, Fi-score is calculated by
the macro-average method. The recall, precision, F}-score are
used to draw the radar figures under different blocks in Fig. 7.
The green, blue and red lines represent the BSBS, BWBFS
and BHBFS, respectively. From the subfigures, the BHBFS
covers the largest area than the others, and the BWBFS is
better than the BSBS. These results further demonstrate that
the decoding performance can be improved by the appropriate
fusion of more natural behaviors.
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Fig. 6.  The confusion matrices of nine best schemes. (a), (b) and (c)
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decoding. (b) CT/WT decoding. (c¢) HC/HW decoding. The green, blue and
red lines represent the BSBS, BWBFS and BHBFES, respectively.

D. Discussion

This paper mainly discusses decoding endovascular manip-
ulations with natural behaviors of interventionalists. In clinical
practice, a practical and feasible framework needs acceptable
decoding performance, which is mainly affected by behaviors,
classification models, and fusion algorithms.

For different behaviors, hand and finger motion are acquired
with high-stability and low-noise data, demonstrating more
competitive ability for manipulation decoding than muscle ac-
tivity. Through appropriate fusion with others, muscle activity
also indicates the potential to improve the decoding accu-
racy. The multi-behavior fusion can fully take advantages of
not only modality-specific contents but also complementarity
among multimodality to obtain more accurate decoding. By
using more modalities, the relationship between endovascular
manipulations and behavioral data can be also described more
completely. For different manipulations, the proposed frame-
work shows much more difficulties in decoding the combined
manipulations since they are more complicated and involve

more behaviors than others.

From the decoding results, some classification models,
BPNN, SVM, GRNN and REF, indicate higher appropriateness
to decode endovascular manipulations than others. In addition,
it can be found that LDA shows poor decoding capability,
which means that the dominant relationship between manipu-
lations and behaviors is nonlinear. Moreover, the classification-
based models outperform the rule-based ones in terms of
decoding performance. This is because the formers hold high
robustness to individual difference and high sensitivity to
sample change. By making use of the correlation between
different patterns, the proposed framework can also optimize
the decoding structure through decoupling endovascular ma-
nipulations partly. It can also be applied in other situations
involved more fusion models and more behaviors because of
its high extensibility.

IV. CONCLUSION

This paper presents a natural-behavior-based multilayer
learning framework for decoding endovascular manipulations.
Compared with single-behavior schemes, multi-behavior fu-
sion can bring considerable improvement in decoding per-
formance. The multilayer structure can also be optimized
by partly decoupling the relationship between manipulation
patterns. In subsequent work, sensor miniaturization and in-
tegration will be considered for more convenient acquisition,
and a novel HRI will be developed based on the proposed
learning framework to maintain natural manipulations of in-
terventionalists.
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