
Multi-Objective Bayesian Optimization Framework
with Random Scalarizations

Artur Souza
Universidade Federal de Minas Gerais

arturluis@dcc.ufmg.br

Leonardo B. Oliveira
Universidade Federal de Minas Gerais

leob@dcc.ufmg.br

Luigi Nardi
Lund University*

luigi.nardi@cs.lth.se

Abstract—Parameter optimization is quickly becoming a chal-
lenging problem in modern solutions for science and industry.
As technology advances, solutions grow more complex and start
demanding the optimization of a large number of parameters in
other to be efficient, a task that becomes challenging even for
experienced field experts. Bayesian Optimization has emerged as
a powerful tool to address this challenge. Bayesian Optimization
is an efficient optimization solution that is able to optimize
complicated black-box functions with less function evaluations
than most other approaches. Given its recent success, many
Bayesian Optimization frameworks have been proposed in the
literature. However, most of these frameworks are still not flexible
enough to meet all the requirements of real world applications.
In particular, most frameworks focus on the optimization of
single objective problems, while real world applications often
must simultaneously optimize multiple conflicting objectives. To
address this issue, we propose a novel multi-objective Bayesian
Optimization solution based on random scalarizations. Our solu-
tion is able to optimize any number of objectives simultaneously
and is also flexible to different parameter types and constrained
search spaces. In this paper, we provide a detailed presentation
of our solution and show that it achieves competitive results on
several synthetic and real world benchmarks.

Index Terms—Optimization Methods; Pareto Optimization;
Bayesian Optimization; Automated Machine Learning;

I. INTRODUCTION

Parameter optimization is a recurrent problem in both science
and industry. Scientists often need to tune parameters for
physical and social experiments, while engineers often have
to tune parameters of the machines used to accelerate tasks.
As both fields advance, the complexity of both machines and
experiments escalate, together with the number of parameters
to tune. As the complexity of these problems grow, the
optimization of problem parameters becomes a daunting task
even for field experts [1].

Bayesian Optimization (BO) has emerged as a powerful
solution for parameter optimization problem. Optimization
problems can be described as optimizing an unknown (black-
box) function f subject to a set of parameters X . BO tackles
this problem by building a surrogate model M to mimic the
behavior of f and then usesM to predict promising parameter
combinations [2]. The surrogate model allows BO to find good
parameter configurations with few function evaluations, making
BO particularly well suited to optimize expensive black box

This work was partially funded by the IEEE Computational Intelligence
Society.
* Work partially conducted as a research scientist at Stanford University.

functions [3]. Several BO frameworks have been proposed
to tackle the parameter optimization problem, with notable
success [4]–[6].

This BO formulation is constrained to problems with a
single optimization objective, while many applications require
the optimization of multiple, often conflicting, objectives.
For instance, when tuning algorithms for hard computational
problems, experts wish to simultaneously minimize algorithm
runtime and maximize the quality of the solutions found by
the algorithm [4]. Similarly, for machine learning models,
it is sometimes desired to maximize model accuracy, while
minimizing model complexity.

In this paper, we present an approach for multi-objective
BO. Mathematically, in a multi-objective setting we consider
a set of K objectives f = (f1, ..., fk) defined over a search
space X. Our goal is to encounter the Pareto frontier of this
set of objectives; that is, the set Γ ⊆ X of points that are not
dominated by any other point in X. Formally, a point x1 is
said to dominate another point x2 if fi(x1) ≤ fi(x2)∀ i ∈
{1, ...,K} and ∃j ∈ {1, ...,K} such that fj(x1) < fj(x2).
We denote dominance by x1 ≺ x2 and thus Γ = {x ∈ X : @x′
such that x′ ≺ x}. Intuitively, the goal is the set Γ of points
that can not be optimized further in any objective without
making another objective worse.

Our multi-objective approach is based on random scalar-
izations, similar to the work of Paria et al. [7]. Simply
put, at each optimization iteration, we randomly sample a
set of weights λ and use it to scalarize the multiple objectives
into a single value through a scalarization function g(λ,x).
Despite similarities, our work extends previous works in multi-
objective BO in two key aspects. First, our solution supports
discrete parameter types, i.e., integer, ordinal, and categorical
parameters (e.g. the type of kernel for a SVM model). Second,
we support constrained search spaces [8], i.e., we are able to
optimize functions where some parameter configurations lead
to impossible scenarios (e.g. a learning model that exceeds the
device’s memory). These two features are indispensable for
several real world application scenarios (e.g. see Section IV).

This paper is organized as follows. Section II presents a
summary of BO and a review of existing BO solutions in the
literature. Section III presents our solution in detail. Section IV
presents our experiments and results on synthetic functions and
a real world application scenario. Finally, Section V presents
our conclusions from this work.

II. BACKGROUND

A. Bayesian Optimization

Bayesian Optimization is a framework to solve optimization
problems. In BO, we wish to find the minimum (or maximum)
of an unknown function over a space of parameters. The
function being optimized is often unknown and, thus, referred
to as a black-box function, while the space of possible parameter
configurations is often called the problem’s search space. The
main advantage of BO is that it is one of the most efficient
approaches considering the number of black-box function
evaluations [3].

BO uses an approach for optimization based on Bayes’
theorem. Put simply, BO builds a posterior model on the black-
box function based on an initial prior and a set of evaluated
configurations (the evidence). BO, then, uses the posterior
model to make informed decisions on which configurations
should be evaluated. BO uses an iterative algorithm, at each
iteration, a new configuration is evaluated and the posterior
model is updated with the new evidence1. It is common,
however, for BO solutions to randomly sample configurations
from the search space to bootstrap the model, before starting the
iterative BO loop. The BO loop is executed for a pre-specified
budget, usually on the number of function evaluations.

The model is a key component of BO solutions. The BO
model must accurately predict the behavior of the black-box
function and be cheap to evaluate. Common model choices for
BO are GPs [7], RFs [4], and Tree-structured Parzen Estimators
(TPE) [9]. Another desired property for BO models is to
accurately estimate the uncertainty of the model itself. This
allows BO to reason over which configurations are worth to
explore considering the quality of the solution (exploitation) and
the uncertainty regarding the black-box function (exploration).
This is the fundamental exploration x exploitation trade-off in
BO.

Another key component of BO is the acquisition function.
The acquisition function dictates which configurations should
be explored next, considering the exploration and exploitation
trade-off. To be effective, the acquisition function must properly
balance exploration and exploitation. Too much focus on
exploration will lead to a good understanding of the black-box
function, but a weak optimized value. Too much focus on
exploitation will lead to a poor understanding of the black-
box function and likely lead optimization to a local minimum
(or maximum). Common choices of acquisition function are
Expected Improvement (EI), Upper Confidence Bound (UCB),
and Thompson Sampling (TS) [2].

Algorithm 1 shows the BO algorithm. We refer to the initial
random sampling phase, to bootstrap the model, as the Design
of Experiments (or DoE) phase. In the next sections, we review
existing BO solutions (Section II-B) and then present our
own approach (Section III, including how we extend this BO
framework to the multi-objective setting, our choices of model

1We note that some BO solutions choose to update the model after a number
of iterations, instead of every iteration. Usually to save computation time or
allow for parallelism.

Algorithm 1 Bayesian optimization.
1: Input: Design space X, DoE sampling size N , and

optimization budget B.
2: Output: Array of explored configurations D.
3: Xdoe ← doe sample(X, N)
4: y ← evaluate(Xdoe)
5: D ← (Xdoe,y)
6: for t = 1 to B do
7: M← fit model(D)
8: x∗ ← arg maxx acq(X,M)
9: y∗ ← evaluate(x∗)

10: D ←D ∪ (x∗,y∗)
11: end for
12: return D

and acquisition function, how we handle constrained search
spaces, and other design decisions.

B. Related Work

Several authors have worked on BO, proposed their own BO
solutions, and steadily advanced the state-of-the-art over the
years. In this section, we review some prominent BO solutions
in the literature, with a focus on BO frameworks. For a more
comprehensive analysis on the different components of BO,
we refer to the survey by Shahriari et al. [2].

One of the earliest and most prominent BO solutions in the
literature is the work of Jones et al. [10]. Jones et al. propose
a BO solution they call Efficient Global Optimization (EGO),
built on top of the DACE model and the EI acquisition function.
The essence of the DACE model lies on a correlation function
that treats the model’s noise as a function of the distance
between points in the space. Turns out this correlation function
is so effective that the authors can simply assume a constant
mean for their stochastic process. Jones et al. adopt this model
and then use a branch-and-bound algorithm to optimize an EI
acquisition function, completing the EGO framework.

The most frequently used model for BO is GP, with several
authors having proposed BO frameworks based on GPs. Snoek
et al. [11], for instance, propose a BO solution based on
GPs dubbet Spearmint. The key insight of Spearmint is a
bijective warping on the inputs to allow the GP to remove the
stationarity of GP models. This allows their solution to handle
applications where the black-box function behaves differently
in different regions of the space, making it more flexible.
Similarly, Gardner et al. [8] propose a constrained BO solution
based on GPs. Their solution models a separate GP on a cost
function and, based on a pre-defined cost threshold, define
a “probability of feasibility” for each configuration in the
search space. This probability of feasibility allows their solution
to handle constrained search spaces, where some parameter
configurations are impossible to evaluate.

As an alternative to GPs, Bergstra et al. [9] have pro-
posed the TPE model for BO. The TPE model works by
simultaneously building two densities over the search space,
one for configurations that lead to good values (l(x)) and

another for configurations that leads to bad values (g(x)).
Bergstra et al. show that an EI acquisition function can be
maximized by simply maximizing the ratio l(x)/g(x), i.e.,
finding configurations that have high probability under l(x) and
low probability under g(x). The resulting TPE BO framework
is competitive with other GP-based solutions, while also
being more efficient for high-dimensional problems. The TPE
optimization framework is openly available via the Hyperopt
library [5].

As another alternative to GPs, Hutter et al. propose a BO
framework based on a RF model. Their solution, dubbed
Sequential Model-Based Algorithm Configuration (SMAC),
uses a RF model and the EI acquisition function, optimized
with a multi-start local search. The RF model allows SMAC to
support discrete and categorical input parameters, a limitation
of GPs and TPE. Hutter et al. show that their RF-based solution
performs better than previous solutions, while also being more
flexible.

In a multi-objective setting, Knowles proposes an exten-
sion of the EGO algorithm for multiple objectives called
ParEGO [12]. ParEGO uses the augmented tchebyshev scalar-
ization function and a set of scalarizing weights to scalarize
multiple objectives into a single value. ParEGO then applies
the EGO algorithm of Jones et al. on the scalarized objectives.
The set of different scalarization weights used allows ParEGO
to find different configurations on the Pareto front for each
weight combination. Knowles compares ParEGO to state-of-
the-art multi-objective evolutionary optimization algorithms
and show that ParEGO is able approximate the Pareto front
better when the number of black-box function evaluations is
limited.

At last, Paria et al. propose an approach for multi-objective
BO using random scalarizations [7]. The approach of Paria is
based on GPs and uses a combination of randomly sampled
weights and scalarization functions to scalarize objectives.
A novelty of Paria et al. ’s solution is to use scalarized
versions of the UCB and TS acquisition functions, rather than
scalarizing the model and then applying the acquisition function
to the scalarized models. Paria et al. prove the convergence
of their solution and show that their solution performs better
than previous solutions, including ParEGO and multi-objective
evolutionary algorithms.

Our approach is similar to that of Paria et al. , however,
we deviate from their solution in key aspects that render
our solution more flexible. First, we replace the GP with a
specialized RF model, which allows us to support integer,
ordinal, and categorical parameters, besides real parameters.
This flexibility is important as many real world applications
require the optimization of these discrete parameters. Further,
we implement a constrained BO approach, based on the work
of Gardner et al. [8], to allow us to handle constrained
search spaces. Once again, this is desirable in real world
applications where some parameter combinations result in
impossible configurations. Our model is described in detail in
the following section.

III. BAYESIAN OPTIMIZATION WITH RANDOM
SCALARIZATIONS

This section presents the various components that compose
our multi-objective BO approach. Our entire algorithm for
BO with random scalarizations is shown in Algorithm 2. A
depiction of the algorithm is shown in Figure 1.

A. Random Scalarizations

The essence of our approach lies in the scalarization
functions. Given a weight distribution L defined on the simplex
λ ∈ R, ||λ||1 = 1, a scalarization function is defined as g(λ,x)
where λ ∼ L and g : Rd × Rd → R is a function producing
scalar values defined over X and the support of L. The function
g(λ,x) is chosen such that optimizing g(λ,x) with respect
to x for a given λ leads to a point in the Pareto front. Thus,
optimizing g(λ,x) with respect to x for different λx ∼ L
leads to different points in the Pareto front. Thus, L can be
seen as a distribution over the Pareto front [7].

We implement three scalarization functions in our BO
approach. Two scalarization functions were presented by Paria
et al. (Equations 1 and 2) and the third is the augmented
Tchebyshev scalarization function (equation 3) [13]. We dub the
functions linear scalarization (Eq. 1), Tchebyshev scalarization
(Eq. 2), and augmented Tchebyshev scalarization (Eq. 3).

The linear scalarization function is defined as:

glin(λ, x) =

K∑
k=1

λkfk(x) (1)

However, as presented by Paria et al. , the linear scalarization
function fails to explore non-convex regions of the Pareto
front. To address this, Paria et al. propose their version of the
Tchebyshev scalarization function, defined as:

gtch(λ, x) =
K

min
k=1

λk(fk(x)− z∗k) (2)

Where z∗k is an ideal reference point, often taken to be the
best possible value of the objectives.

We have also implemented the augmented Tchebyshev
scalarization function as found in [12], [13]. The augmented
Tchebyshev scalarization is defined as:

gtcha
(λ, x) =

K
max
k=1

λkfk(x) + α

K∑
k=1

λkfk(x) (3)

Where α is the augmentation constant, set to α = 0.05 as
in ParEGO [12].

B. Random Forest Model

We replace Paria et al. ’s GP with a RF model. Using RFs
allow our solution to support ordinal and categorical variables.
We use an adapted RF model proposed by Hutter et al. [14],
which is better suited for BO. Namely, we treat the RF as a
mixture model of T trees, compute a mean µt and variance
σ2
t for each tree t, and assume a predictive distribution: N (µ,
σ2) with:

Fig. 1. Multi-objective BO with random scalarizations.

Algorithm 2 Multi-objective optimization with random scalar-
izations.

1: Input: Design space X, DoE sampling size N , optimiza-
tion budget B, weight distribution L. K objectives and C
constraints.

2: Output: Design space exploration array D.
3: Xdoe ← doe sample(X, N)
4: yk ← evaluate(Xdoe)∀ 1 ≤ k ≤ K
5: D ← (Xdoe,y1, ...,yK)
6: for t = 1 to B do
7: Mk ← fit model(D)∀ 1 ≤ k ≤ K
8: PFc ← fit model(D)∀ 1 ≤ c ≤ C
9: Sample λt ∼ L

10: x∗ ← arg maxx acq(X,λt,M1, ...,MKPF1, ..., PFC)
11: y∗k ← evaluate(x∗)∀ 1 ≤ k ≤ K
12: D ←D ∪ (x∗,y∗)
13: end for
14: return D

µ =
1

T

T∑
t=1

µt (4)

σ2 =

(
1

T

T∑
t=1

σ2
t

)
+

1

T

(
T∑

t=1

µ2
t

)
− µ2 (5)

We also change the way splits are selected in the trees, as
proposed by Hutter et al. . By default, the split point is chosen
in the middle point between the two samples at the boundary
of the split regions. Instead, we uniformly sample a point for
the split in the interval defined by the boundary samples. That
is, we sample the split point as s U(xl, xu), where xl and
xu are the (lower and upper) boundary samples. This causes
the variance to vary smoothly in the space, rather than being
divided into constant regions.

C. Acquisition Function

We implement three acquisition functions. Two of them
(TS and UCB) are implemented as described by Paria et al. ,

adapted to accommodate our different model. The third is an
Expected Improvement acquisition function.

The first acquisition function we implement is Thompson
Sampling (TS). With GPs, the idea behind TS is to randomly
sample a function from the GP and use it as the surrogate
model. The randomly sampled function introduces exploration,
while optimizing this function favors exploitation. To capture
this idea with RFs, we train n RF models with subsets of
the data, through bootstrapping, and, then, randomly sample
one of these models to use as our surrogate [15]2. Simply
combining this sampled model with the scalarizations defined
in Section III leads to the scalarized TS function that we:

glin(λ, x) =

K∑
k=1

λkf
′
k(x) (6)

gtch(λ, x) =
K

min
k=1

λk(f ′k(x)− z∗k) (7)

gtcha(λ, x) =
K

max
k=1

λkf
′
k(x) + α

K∑
k=1

λkf
′
k(x) (8)

Where f ′ is a RF model fitted through bagging.
The second acquisition function we implement is the Upper

Confidence Bound (UCB). The key idea of UCB is to be
optimistic and consider the upper confidence of the prediction
for each point instead of the mean. In order to compute UCB,
we compute the empirical mean and variance for our RF model
and use them to compute UCB as:

glin(λ, x) =

K∑
k=1

λkµk(x) +
√
βt

√√√√ K∑
k=1

λ2kσ
2
k(x) (9)

gtch(λ, x) =
K

min
k=1

λk(µk(x) +
√
βtσk(x)) (10)

2This is equivalent to training a single RF model on a random subset of
the data. We follow this simplified approach in our implementations to make
it more efficient.

gtcha(λ, x) =
K

max
k=1

λk(µk(x) +
√
βtσk(x))

+ α

K∑
k=1

λk(µk(x) +
√
βtσk(x)) (11)

βt is a UCB parameter set as βt = 0.125 log(2t+ 1), where
t is the iteration number [7].

Finally, the third acquisition function we implement is EI. EI
is an improvement-based acquisition function that prioritizes
points that are more likely to improve on the best function value
found so far. This improvement is encoded in an improvement
function:

I(x) = (fmin − f(x))I(fmin > f(x)) (12)

Where fmin is the lowest function value found so far and I
is the indicator function. The EI takes the expectation of the
improvement function to decide where to explore next. This is
computed analytically as:

EI(x) = (fmin − f(x))Φ

(
(fmin − f(x))

σ

)
+ σφ

(
(fmin − f(x))

σ

)
(13)

Where Φ and φ are the normal cumulative distribution
function and probability distribution function, respectively.
After computing the EI for each objective, we scalarize them
with:

glin(λ, x) =

K∑
k=1

λkEIk(x) (14)

gtch(λ, x) =
K

min
k=1

λk(EIk(x)− z∗k) (15)

gtcha(λ, x) =
K

max
k=1

λkEIk(x) + α

K∑
k=1

λkEIk(x) (16)

D. Optimizing the Acquisition Function

We also depart from the reference paper in the optimization
of the acquisition function. Paria et al. use the DIRECT
algorithm to optimize their acquisition functions [16]. However,
the DIRECT algorithm does not work well with categorical
parameters [17]. Instead, we use a multi-start local search to
optimize our acquisition functions.

We implement a best improvement multi-start local search
similar to the one proposed in SMAC [4]. First, we compute
the scalarization of all the previously evaluated configurations,
pick the 10 best performing points, and start local searches on
each of these points. Additionaly, we randomly sample 10,000
points, compute their scalarized values, and start local searches
on the 10 best performing random points.

Algorithm 3 Multi-start best improvement local search.
1: Input: Design space X, previously evaluated points Dp =
{Xp,Yp}, number of random samples Nr, number of
local search starting points Ns, function to minimize f .

2: Output: Best configuration found by the local search.
3: Dp ← get best(Dp, Ns)
4: Xr ← random sample(X, Nr)
5: Yr ← f(Xr)
6: Dr ← (Xr,yr)
7: Dr ← get best(Dr, Ns)
8: D ← Dp ∪Dr

9: xbest,ybest ← get best(D, 1)
10: for each (x,y) in D do
11: end of search = False
12: while end of search = False do
13: Xn ← get neighbors(x)
14: x∗ ← arg minx∈Xn

f(x)
15: y∗ ← f(x∗)
16: if y∗ < y then
17: x← x∗

18: y ← y∗

19: else
20: end of search = True
21: end if
22: end while
23: if y < ybest then
24: xbest ← x
25: ybest ← y
26: end if
27: end for
28: return xbest

We follow SMAC’s one-exchange approach to generate
the neighborhoods for the local search. For categorical and
ordinal parameters, we generate all neighbors that differ in
the value of exactly one categorical parameter. For real and
integer parameters, we normalize the range of each objective
to [0, 1] and randomly sample four neighbors from a truncated
gaussian centered at the original parameter value v and standard
deviation σ = 0.2.

E. Constrained Optimization

We also complement our BO solution with the constrained
Bayesian Optimization (cBO) approach proposed by Gardner
et al. [8]. When constraints are present, the optimum is the
point that maximizes (or minimizes) the acquisition function
weighed by the probability of that point being feasible. Thus,
the acquisition functions become:

acqc(x,λ) = PF (x)acq(x,λ) (17)

Where PF (x) is the probability of point x being feasible. In
our solution, we use a RF classifier to model PF (x), instead
of a GP as originally proposed. The RF classifier allows us to
handle mixed parameter types in the feasibility constraint as
well as unknown feasibility constraints.

TABLE I
SYNTHETIC FUNCTIONS USED TO EVALUATE AND COMPARE OUR SOLUTION

TO SMAC.

Function Input parameters Search Space
1d Branin 1 x = [−5, 10]
1d CurrinExp 1 x = [0, 1]
Branin 2 x1 = [−5, 10], x2 = [0, 15]
CurrinExp 2 x1 = [0, 1], x2 = [0, 1]
Ellipsoidal 4 xi = [−5, 5] ∀ 1 ≤ i ≤ 4
10d Counting Ones 10 xi = {0, 1} ∀ 1 ≤ i ≤ 10

F. ε-greedy

At last, we implement an ε-greedy approach during our BO.
That means we choose the best configuration (according to
our acquisition function) to explore (1 - ε)% of the time and
randomly choose a configuration to explore ε% of the time. By
default, we set ε = 0.05. The randomly sampled configurations
mean our solution will not become exceedingly greedy in
its exploitation and also means our solution is guaranteed to
converge.

IV. RESULTS

In this section we evaluate our solution on a set of synthetic
functions as well as a real world application with the Spatial
programming language [18].

A. Synthetic Functions

We evaluate our solution on a set of six synthetic functions.
We compare all functions to SMAC, a state-of-the-art tool also
based on RF models. To enable comparison to SMAC, we use
synthetic functions with a single optimization objective. We
compare both solutions based on their simple regret, that is,
the difference between the best solution found by each tool and
the true global minimum of each function. We also compare
our tools with two different DoE approaches, random sampling
and latin hypercube sampling. By default, SMAC uses SOBOL
for its DoE phase. We used the Tchebyshev scalarization and
EI acquisition function on all benchmarks.

The synthethic functions used are summarized in Table I.
Branin3 and CurrinExp4 are common benchmark functions
in the literature. For their monodimensional counterparts, we
fixate one of the input parameters at the one of the optima5

and optimize the other parameter. The ellipsoidal function
was taken from the Black-Box Optimization Benchmarking
Workshop [19], with xopt = 1. The counting ones function is
a benchmark where input parameters can be either 0 or 1 and
the goal is to minimize the sum of all parameters.

Figure 2 shows the comparison between our solution and
SMAC. We allow each method to perform a total of 60 function
evaluations for each function. For the monodimensional cases,
10 of the 60 evaluations are used for DoE, for the other cases,

3https://www.sfu.ca/ ssurjano/branin
4https://www.sfu.ca/ ssurjano/curretal88exp
5we set x2 = 2.275 for the Branin and x2 = 1 for CurrinExp

15 of the 60 evaluations are used for DoE. Each figure shows the
mean and standard deviation of the regret after 10 executions.

Figure 2 shows that our method is competitive with SMAC
on the single-objective optimization problem. Out of six
benchmarks, our method performed better in three, tied in
one, and lost in two. Further, we note that our function found
the exact global optimum in two benchmarks and got extremely
close to the global optimum on two others (0.01 and 0.1 regret).
We also note that random sampling DoE worked better than, or
equal to, Latin Hypercube DoE on five out of six benchmarks.

B. Spatial Programming Language

We next evaluate our method in two of the Spatial Program-
ming Language benchmarks. Spatial [18] is a domain-specific
language (DSL) and corresponding compiler for the design of
application accelerators on reconfigurable architectures. Both
benchmarks are composed solely of ordinal and categorical
parameters, the number of input parameters and the total size
of the search space (in number of possible configurations) are
shown in Table I.

First, we evaluate the performance of our method on the
BlackScholes benchmark. Here, we wish to optimize both the
runtime (in Cycles) and the architecture area usage (in logic
units used). The search space is also constrained on the area
used, since some configurations may exceed the number of
logic units available, naturally, an impossible configuration.

Figure 3 shows a comparison between the Pareto front found
by our method and the real Pareto front. 1000 random points
were used as DoE and 500 points were evaluted during BO. We
used the linear scalarization and the TS acquisition function.
We note that the Pareto front found is nearly identical to the real
Pareto front, thus, our method got close to the true optimum.

Next, we evaluate our solution on the more challenging
Molecular Dynamics Grid benchmark. Here, we wish to
optimize only the runtime, but still constrain the search space
on the area used. Due to the size of the search space, it is
unfeasible to compute the true optimum for this benchmark.
Instead, we compare the performance of our BO method with
random sampling (with up to 8x the budget of BO) and a
multi-start local search similar to the one used to optimize our
acquisition functions.

Figure 4 shows a comparison of the simple regret for each
optimization method. The X-axis shows the number of samples
evaluated, where for each Nx random sampling, the method
was allowed to evaluate N configurations for each configuration
the BO and local search methods evaluated. Our BO method
consistently found the best minimum for the benchmark of all
methods considered, being considerably superior to all random

TABLE II
SPATIAL BENCHMARKS USED FOR OUR REAL WORLD APPLICATION

EXPERIMENTS.

Benchmark Input parameters Search Space Size
BlackScholes 4 7.68104

Molecular Dynamics 11 1.6x109

Fig. 2. Simple regret comparison between our solution and SMAC. The solid line shows the mean after 10 executions, while the shaded area shows the
standard deviation. Both methods had the same budget for DoE and BO. For our method, we experiment with two DoE types: random sampling and Latin
Hypercube sampling. SMAC, by default, uses SOBOL for DoE.

sampling approaches, even with a 8x smaller budget. The local
search performed second best, being consistently better than
all random sampling approaches.

V. CONCLUSION

In this paper, we introduced our own multi-objective BO
solution based on random scalarizations. Our approach builds
on top of previous works in the literature and expands the
state-of-the-art by supporting different parameter types and
constrained search spaces. We compare our approach to a state-
of-the-art optimization framework, showing that our framework
is able to produce competitive results, while also being more
flexible. We also evaluate our solution on two Spatial DSL
benchmarks and show that our solution can be effectively used
in real world application scenarios.

REFERENCES

[1] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction
to derivative-free optimization, volume 8. Siam, 2009.

[2] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[3] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[4] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
Model-based Optimization for General Algorithm Configuration. In
International Conference on Learning and Intelligent Optimization, 2011.

[5] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, 2013.

[6] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt.
Gpflowopt: A bayesian optimization library using tensorflow. arXiv
preprint arXiv:1711.03845, 2017.

[7] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A
Flexible Multi-Objective Bayesian Optimization Approach using Random
Scalarizations. CoRR, abs/1805.12168, 2018.

[8] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger,
and John P Cunningham. Bayesian Optimization with Inequality
Constraints. In ICML, 2014.

[9] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in neural
information processing systems, pages 2546–2554, 2011.

[10] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient
global optimization of expensive black-box functions. Journal of Global
optimization, 13(4):455–492, 1998.

[11] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input
warping for bayesian optimization of non-stationary functions. In
International Conference on Machine Learning, 2014.

[12] Joshua Knowles. ParEGO: A Hybrid Algorithm with On-line Landscape
Approximation for Expensive Multiobjective Optimization Problems.
Technical Report TR-COMPSYSBIO-2004-01, University of Manchester,
September 2004.

[13] Hirotaka Nakayama, Yeboon Yun, and Min Yoon. Sequential Approximate
Multiobjective Optimization Using Computational Intelligence. Springer
Science & Business Media, 2009.

[14] Holger H. Hoos Kevin Leyton-Brown Frank Hutter, Lin Xu. Algorithm
Runtime Prediction: Methods & Evaluation. CoRR, abs/1805.12168,
2013.

[15] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian ban-

0 20 40 60 80 100
Logic Utilization (%)

107

108

Cy
cle

s (
lo

g)
real_pareto
random_scalarizations

Fig. 3. Comparison between the Pareto front found for the BlackScholes Spatial
benchmark and the true Pareto front. The TS acquisition function and linear
scalarization function were used. A total of 1500 configurations were evaluated,
1000 of those during DoE.

Fig. 4. Regret comparison of different optimization methods on the Molecular
Dynamics Grid benchmark. The solid line shows the average regret and the
shaded area shows the standard deviation after 10 runs. Each Nx random
sampling was allowed to evaluate N samples for each sample the BO/local
search methods evaluated.

dits showdown. In International Conference on Learning Representations,
2018.

[16] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian
Optimization Without the Lipschitz Constant. Journal of optimization
Theory and Applications, 79(1):157–181, 1993.

[17] Donald Jones. The direct global optimization algorithm. Encyclopedia
of Optimization, 1, 01 2001.

[18] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, et al. Spatial: A language and compiler for application
accelerators. In ACM Sigplan Notices, volume 53, pages 296–311. ACM,
2018.

[19] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-
parameter black-box optimization benchmarking 2009: Presentation of
the noiseless functions. Technical report, Citeseer, 2010.

	Introduction
	Background
	Bayesian Optimization
	Related Work

	Bayesian Optimization with Random Scalarizations
	Random Scalarizations
	Random Forest Model
	Acquisition Function
	Optimizing the Acquisition Function
	Constrained Optimization
	-greedy

	Results
	Synthetic Functions
	Spatial Programming Language

	Conclusion
	References

