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Abstract—Using surrogate models in evolutionary search pro-
vides an effective means for Evolutionary Algorithms (EAs) to
handle complex engineering design problems such as compu-
tationally expensive problems under limited computational re-
sources. As different modeling techniques may model differently
on different problem landscapes, the choice of modeling technique
can further affect the performance of the evolutionary search.
However, it is very hard to make an appropriate choice of
modeling technique without any prior knowledge of the opti-
mization problem. To address this issue, recent surrogate-assisted
evolutionary frameworks have relied on simultaneous use of
multiple modeling techniques or selecting one according to some
performance metric. In this work, we consider a novel scheme
to adapt the surrogate modeling technique in the evolutionary
search process, which differs from existing approaches in em-
ploying a hierarchical structure of surrogates. The experimental
results showed the superiority of our proposed algorithm over
two state-of-the-art surrogate-assisted EAs addressing this issue.

Index Terms—evolutionary algorithms, computationally expen-
sive problems, surrogate model, multiple modeling techniques

I. INTRODUCTION

AS a class of stochastic global optimization algorithms,
Evolutionary Algorithms (EAs) have become one of

the most popular optimization techniques and achieved great
success on a variety of real-world applications, such as music
composition [1], financial forecasting [2], aircraft design [3],
job shop scheduling [4], and drug design [5].

However, new challenges still arise for EAs due to in-
creasing computational needs in real-world applications. For
instance, a continuing trend in the engineering field is the use
of increasingly high-fidelity analysis codes such as Compu-
tational Structural Mechanics (CSM), Computational Electro-
Magnetics (CEM), and Computational Fluid Dynamics (CFD)
in the design and simulation process to evaluate the system
performance of one design. This brings a class of Computa-
tionally Expensive Problems (CEPs) for which evaluating the
quality of a candidate solution (i.e., one fitness evaluation)
may take from minutes to hours of supercomputer time. For
example, one function evaluation involving the solution of the
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Navier-Stokes equations can take many hours of computer
time in aerodynamic wing design [6]. As EAs usually need
a lot of fitness evaluations to achieve a satisfying solution, it
becomes computationally prohibitive to use EAs to solve such
problems.

In this context, researchers have developed many methods
to make EAs suitable for CEPs. Among them, the use of
surrogate models to replace the real fitness function within
the evolutionary framework is becoming a common practice.
Surrogate models are computationally efficient models, and
can be used in lieu of the real fitness function to reduce
computational cost [7]. For example, surrogate models can
be interpolation or regression models that are built to approx-
imate the real fitness function using some input output pairs
evaluated by the fitness function. Through the use of surrogate
models, the computational burden can be greatly reduced since
the efforts required to build the surrogates and to use them
are much lower than evaluating a candidate solution with
the exact fitness function. Among the modeling techniques,
multivariate polynomial regression method (PR), radial basis
function (RBF) network method, Kriging method and support
vector machines (SVMs) method are the most prominent and
commonly used [8].

However, modeling techniques may model differently on
different problem landscape [9]. Depending on the complexity
of the optimization problem, the choice of modeling technique
can further affect the performance of surrogate-assisted op-
timization. Given prior knowledge of the fitness landscape
is unavailable beforehand, it is almost impossible to know
which modeling technique is the most relevant for the fitness
landscape or can generate reliable fitness predictions, which
has become one of the greatest barriers to further progress
in surrogate-assisted optimization. In the literature, various
studies have been carried out along this direction.

Some studies focused on developing performance or assess-
ment metrics to measure the performance of surrogate model.
Particularly, the focus has been placed on building multiple
surrogate models and selecting the best one that has minimum
training error on the training points. Maximum/mean absolute
error, root mean square error (RMSE) and correlation measure
denote some of the performance metrics that are commonly
used [6]. Typical model selection schemes that stem from the
field of statistical and machine learning, including the split
sample approach, cross-validation and bootstrapping were also
employed to select surrogate models that have low estimation
of apparent and true errors [10], [11]. In [12], multiple cross-
validation schemes are used for the selection of low-error
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surrogates that replace the original costly high-fidelity analysis
solver to avoid convergence at false optima of poor accuracy
models.

In the field of multidisciplinary optimization, this issue is
commonly handled by performing multiple optimization runs,
each on a different surrogate model [13], [14] or ensem-
ble model [15], [16]. Use of multiple surrogates was also
considered in Efficient Global Optimization (EGO). In EGO,
one optimization run is performed on the surrogate model to
obtain a solution point per optimization cycle. The surrogate
model will be updated with the obtained solution point and the
updated model will be used in the next optimization cycle. In
a recent work [17], the authors proposed generating several
solution points by performing multiple optimization runs on
multiple surrogate models per optimization cycle. Under the
condition of parallel computing, this strategy exhibited supe-
rior performance than using single surrogate model. This is
because that adding multiple solution points can make the
surrogate model more accurate in the next optimization cycle
but the total time of each optimization cycle does not increase
when multiple optimization runs are performed in parallel.

Simultaneous use of multiple modeling techniques also
exists in the evolutionary framework. In [9], a generalized
evolutionary framework called GSM was proposed by uni-
fying diverse surrogate models synergistically in the memetic
evolutionary search. Specifically, for each individual in the
current population, two surrogate models are constructed on
the selected nearest evaluated points using different modeling
techniques. One surrogate model is an ensemble of three mod-
els, which include the interpolating Kriging/Gaussian process
(GP), interpolating linear RBF and second-order PR. The other
is second-order PR. Then, one local search run is performed
on each surrogate model to obtain an improved solution on the
surrogate model. The two generated solutions will be evaluated
with the real fitness function and the best one will be selected
to replace the current individual if it is better than the current
individual.

In the same memetic evolutionary framework, Le et al.
proposed the Evolvability Learning of Surrogates (EvoLS)
[18]. The concept of ”evolvability” indicates the productivity
of a modeling technique that brings about fitness improvement
in the local search and was used as the basis for adapting
modeling technique in the evolutionary search. The evolvabil-
ity of one model technique is calculated based on the quality
of the solutions found by the model technique in previous
local search performed for individuals in previous genera-
tions. Surrogate models used in EvoLS include interpolating
Kriging/Gaussian process (GP), interpolating linear RBF and
second-order PR. A numerical study of EvoLS on several test
functions showed the superiority of EvoLS over GSM.

In this paper, we propose a novel approach to adapt surro-
gate modeling techniques in the memetic evolutionary search
process. Inspired from the hierarchical mixture of expert model
[19], we consider adapting the surrogate modeling through
a two-level hierarchical structure. In our approach, for each
individual in the current generation, several surrogate models
are built as the low-level surrogate models. Then, local search
is performed on each low-level surrogate model to find an

improved solution over the surrogate model. After this, a high-
level surrogate model is built to identify the potentially best
one among the newly found solutions, and meanwhile the most
promising low-level surrogate model is identified. In the end,
only this identified solution is evaluated with the exact fitness
function.

Compared to the method employed in GSM, our method can
be cost effective as GSM needs multiple fitness evaluations to
select the best surrogate model while our method only need
one fitness evaluation. In comparison with EvoLS, EvoLS
actually selects modeling technique through predicting its
current performance based on its past performance(in the
calculation of evolvability, EvoLS assumes the same modeling
technique now generates the same solution in the local search
for one individual as it does for the same individual before).
However, our method can rely on prediction the fitness or rank
of solutions found on each surrogate model, which seems more
reliable than the performance prediction of surrogate modeling
because the performance of surrogate model changes as more
sampling points are generated. In this paper, the performance
of GSM, EvoLS and our our algorithm, evolutionary opti-
mization with hierarchical surrogates (EHS in brief), will be
statistically compared considering the quality of the obtained
solutions on several benchmark functions.

The rest of this paper is organized as follows. In Section
II, details of the proposed algorithm is given. In Section III,
experimental results and analysis are presented to evaluate the
efficacy of EHS. Finally, Section IV concludes this paper.

II. THE PROPOSED APPROACH

In this section, the proposed approach to adapt surrogate
modeling techniques in the memetic evolutionary search pro-
cess was proposed.

Without loss of generality, we assume in this paper the
optimization problem has the following formulation.

min
x
f(x) (1)

where x is a vector of n decision variables in a continuous
decision space Ω =

∏n
i=1[li, ui], and f : Ω ⊆ ℜn → ℜ is

called the objective function.
Assuming the number of surrogate modeling techniques is

k, the outline of the generated algorithm (EHS) can be shown
as in Algorithm 1.

The EHS begins with the initialization of a population of
candidate solutions. During the database building phase, the
population is evolved with selection, crossover and mutation
operators using exact fitness evaluations for a certain number
of generations, and all exact evaluations are archived into a
database DB . This is to accumulate training samples to build
surrogate models.

Subsequently, EHS proceeds in the phase during which
surrogate models are involved. For each individual in the
current generation, m nearest evaluated points to it according
to the Euclidian distance are selected as the training set.
Then, k low-level surrogate models are trained on this set to
approximate the fitness function using different approximation
methodologies. For each low-level surrogate model, local
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search is performed to find one improved solution over the
surrogate model. After this, a high-level surrogate model is
built to identify the potentially best one among the newly
found solutions. Then, this identified solution is evaluated with
the exact fitness function and this solution will replace the
current individual if it is better than the current individual. This
process iterates until the computational budget is exhausted,
i.e., all the fitness evaluations are used up.

Algorithm 1 EHS
1: Initialize a population PG = {xi,G|i = 1, 2, ..., popsize}
2: Evaluate PG using the exact objective function
3: Archive all exact evaluations into a database DB
4: while computational budget is not exhausted do
5: if database building phase does not end then
6: Evolve PG with evolutionary operators (selection,

crossover and mutation) using exact evaluations,
archive all exact evaluations into DB

7: else
8: Apply evolutionary operators to create a new popu-

lation PG

9: for each xi,G in PG do
10: Find m nearest points to xi,G in DB as training

points for surrogate models.
11: Training k low-level surrogate models on these

points using different modeling methodologies
12: Apply local search in each surrogate model to

arrive at k new solutions.
13: Build a high-level surrogate model S based on DB

and the k new solutions
14: Select the best one among the k solutions accord-

ing to S (denoted as xopti,G)
15: if f(xopti,G)<f(xi,G) then
16: xi,G=xopti,G

17: end if
18: Archive all exact evaluations into DB
19: end for
20: end if
21: Set G = G+ 1
22: end while

A. Low-level surrogate models

For each current individual, several low-level surrogate
models are trained using the nearest evaluated points in the
database to approximate the fitness function. These surrogate
models are made different from each other through the use
of different modeling techniques such as PR, RBF, Kriging
and so on. They can also be created using the same modeling
technique with different modeling parameter settings.

B. Local Search

For each individual xi,G in the population, the local search
method is to minimize each problem on the landscapes ap-
proximated by the low-level surrogate models. The problem

on the landscape approximated by the j-th low-level surrogate
model has the form:

minf̂j(xi,G + s)
subject to: ∥ s ∥≤ ∆

(2)

where ∆ = [ min
i=1,2,...,m

{y(k)(i) }, max
i=1,2,...,m

{y(k)i }]
k=1,2,...,n

, ∀i =

1, 2, ...,m, and y(k)i denotes the k-th dimension of the i-th
selected training sample.

In this paper, an efficient local search strategy, Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS-B) method [20], is em-
ployed to minimize the problem on each approximated land-
scape.

C. High-level surrogate model

The high-level surrogate model is built to select best one
among the solutions found by the local search over each
surrogate model. For high-level surrogate models, we consider
ranking models in this paper as they seems more appropriate
to select the best individuals [21], [22], and use an efficient
algorithm RankBoost [23] to build ranking models.

Furthermore, to build a ranking model, we select m′ nearest
evaluated points in the database for each solution found over
low-level surrogate models and combine them together, 80%
of which are chosen uniformly as the training set and the
remaining 20% form the set for validating the prediction
quality. If the prediction accuracy of S is larger than 0.5 (the
accuracy of a random approach), the solution appears the best
according to S will be selected to evaluate with the exact
objective function, otherwise a solution is randomly selected
for the exact evaluation.

III. EXPERIMENTAL VALIDATION

To validate the efficiency of the proposed EHS, experi-
mental studies have been conducted to compare EHS with
GSM and EvoLS. In this section, numerical results on the
proposed EHS are obtained using the same three approxima-
tion methodologies (i.e., k = 3) as used in [9] and [18], i.e.,
1) interpolating linear spline RBF, 2) second order PR and 3)
interpolating Kriging/GP. Details of PR, RBF and Kriging/GP
can be found in [18].

A. Experimental Setup

Empirical study on the EHS was performed using the same
10 test functions used in GSM (6 of which were used in
EvoLS). The 10 benchmark functions (F1-F10) were reported
in [24], [25] and summarized in Table I. More detailed
description of these functions can be found in [24], [25]. In
this paper, the number of decision variables, n, was set to 30
for all benchmark functions.

Considering that only limited computational resources are
allowable to solve CEPs, for each test function, the maximum
number of fitness evaluations is set to 3000 and the maximum
number of fitness evaluations in the building phase is set
to 600. For each of GSM, EvoLS and EHS, the number
of nearest points selected for each current individual is set
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TABLE I
THE BENCHMARK FUNCTIONS

Benchmark Description Global
Function Optimum

F1 Ackley 0.0
F2 Griewank 0.0
F3 Rosenbrock 0.0
F4 Shifted Rotated Rastrigin (F10 in [25]) -330.0
F5 Shifted Rotated Weierstrass (F11 in [25]) 90.0
F6 Shifted Expanded Griewank -130.0

plus Rosenbrock (F13 in [25])
F7 Hybrid Composition Function 120.0

(F15 in [25])
F8 Rotated Hybrid Composition Function 120.0

(F16 in [25])
F9 Rotated Hybrid Composition Function 10.0

with Narrow Basin Global Optimum
(F19 in [25])

F10 Noncontinuous Rotated Hybrid 360.0
Composition Function (F23 in [25]

to 200 (i.e., m = 200 for EHS). The value of m′ used
in building the high-level surrogate model in EHS is set to
100. The other parameters for GSM and EvoLS were set
the same as in their original papers. The other parameter
configurations of EHS are defined as in Table II. Note that
the basis evolutionary algorithm of EHS is Genetic Algorithm
(GA) and the parameter setting of it is the same as in GSM.

In our experiment, 25 independent runs were conducted
for each algorithm on each test function in the MATLAB
environment. The minimum objective function values found
by each algorithm at 1000 FEs, 2000 FEs and 3000 FEs on
each test function over the 25 runs were recorded to measure
its performance. Moreover, Wilcoxon rank-sum test at a 0.05
significance level was used in this paper to compare EHS with
each of GSM and EvoLS.

TABLE II
ALGORITHM CONFIGURATION

Parameter Settings
Population size 100

Selection scheme Elitism and ranking selection
Variation operators Uniform crossover and mutation

Crossover probability 0.9
Mutation probability 0.1
Local search method L-BFGS-B

Stopping criteria 3000 evaluations
Database building phase 600 evaluations

Number of independent runs 25

B. Experimental Results

Tables III and VIII summarize the average and standard
deviation of the function error values obtained by the 3
algorithms on all the test functions at 1000 FEs, 2000 FEs and
3000 FEs. The results of Wilcoxon rank-sum test are presented
in the last three rows of each table.

As can be seen from the last three rows of Tables III and
V, EHS obtained higher solution quality than GSM on all the
test functions at each of 1000 FEs, 2000 FEs and 3000FEs.

From the last three rows of Tables VI and VIII, it can be
seen that EHS outperformed EvoLS on all the test functions

TABLE III
EXPERIMENTAL RESULTS OF GSM AND EHS OVER 25 RUNS AT 1000 FES

ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE THAT
THE RESULT OF GSM IS BETTER THAN, WORSE THAN, AND COMPARABLE

TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 1.36e+001±1.29e+000 − 1.06e+001±6.01e-001
F2 5.41e-001±8.02e-001 − 3.55e-007±3.68e-007
F3 1.71e+002±4.43e+001 − 6.18e+001±1.21e+001
F4 -4.02e+001±2.04e+001 − -9.42e+001±2.89e+001
F5 1.36e+002±1.19e+000 − 1.34e+002±1.73e+000
F6 -5.67e+001±1.88e+001 − -1.01e+002±2.45e+000
F7 8.80e+002±6.96e+001 − 8.42e+002±4.60e+001
F8 5.50e+002±7.71e+001 − 4.86e+002±5.83e+001
F9 1.10e+003±2.20e+001 − 1.07e+003±1.53e+001

F10 1.56e+003±3.06e+001 − 1.49e+003±3.78e+001
− 10
+ 0
≈ 0

TABLE IV
EXPERIMENTAL RESULTS OF GSM AND EHS OVER 25 RUNS AT 2000 FES

ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE THAT
THE RESULT OF GSM IS BETTER THAN, WORSE THAN, AND COMPARABLE

TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 9.16e+000±1.21e+000 − 6.77e+000±3.66e-001
F2 3.97e-001±5.29e-001 − 2.51e-007±2.48e-007
F3 9.13e+001±1.55e+001 − 2.75e+001±7.63e-001
F4 -7.52e+001±2.28e+001 − -2.68e+002±1.43e+001
F5 1.35e+002±1.09e+000 − 1.28e+002±5.17e+000
F6 -7.92e+001±1.04e+001 − -1.09e+002±1.22e+000
F7 7.76e+002±7.21e+001 − 6.30e+002±4.68e+001
F8 4.58e+002±6.83e+001 − 2.95e+002±8.59e+001
F9 1.04e+003±1.81e+001 − 1.02e+003±2.00e+001

F10 1.45e+003±7.81e+001 − 1.21e+003±1.40e+002
− 10
+ 0
≈ 0

TABLE V
EXPERIMENTAL RESULTS OF GSM AND EHS OVER 25 RUNS WITH 3000
FES ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE

THAT THE RESULT OF GSM IS BETTER THAN, WORSE THAN, AND
COMPARABLE TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 5.50e+000±6.24e-001 − 5.11e+000±4.79e-001
F2 3.62e-001±4.76e-001 − 2.04e-007±1.44e-007
F3 4.93e+001±8.53e+000 − 2.66e+001±8.18e-001
F4 -9.69e+001±2.16e+001 − -2.75e+002±1.26e+001
F5 1.35e+002±9.18e-001 − 1.21e+002±7.46e+000
F6 -8.93e+001±6.32e+000 − -1.11e+002±1.26e+000
F7 7.24e+002±6.46e+001 − 5.81e+002±3.97e+001
F8 4.41e+002±6.73e+001 − 2.85e+002±8.91e+001
F9 1.03e+003±1.44e+001 − 9.84e+002±3.14e+001

F10 1.38e+003±1.17e+002 − 1.07e+003±1.18e+002
− 10
+ 0
≈ 0



5

TABLE VI
EXPERIMENTAL RESULTS OF EVOLS AND EHS OVER 25 RUNS WITH 1000

FES ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE
THAT THE RESULT OF EVOLS IS BETTER THAN, WORSE THAN, AND

COMPARABLE TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 1.38e+001±1.27e+000 − 1.06e+001±6.01e-001
F2 7.18e-001±1.92e+000 − 3.55e-007±3.68e-007
F3 2.47e+002±7.43e+001 − 6.18e+001±1.21e+001
F4 -3.01e+001±3.04e+001 − -9.42e+001±2.89e+001
F5 1.36e+002±2.18e+000 − 1.34e+002±1.73e+000
F6 -5.48e+001±2.80e+001 − -1.01e+002±2.45e+000
F7 9.96e+002±5.83e+001 − 8.42e+002±4.60e+001
F8 6.71e+002±1.23e+002 − 4.86e+002±5.83e+001
F9 1.18e+003±2.91e+001 − 1.07e+003±1.53e+001
F10 1.63e+003±2.43e+001 − 1.49e+003±3.78e+001
− 10
+ 0
≈ 0

TABLE VII
EXPERIMENTAL RESULTS OF EVOLS AND EHS OVER 25 RUNS WITH 2000

FES ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE
THAT THE RESULT OF EVOLS IS BETTER THAN, WORSE THAN, AND

COMPARABLE TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 5.92e+000±7.76e-001 + 6.77e+000±3.66e-001
F2 2.40e-001±4.32e-001 − 2.51e-007±2.48e-007
F3 1.20e+002±2.04e+001 − 2.75e+001±7.63e-001
F4 -7.06e+001±2.31e+001 − -2.68e+002±1.43e+001
F5 1.36e+002±1.45e+000 − 1.28e+002±5.17e+000
F6 -8.52e+001±1.18e+001 − -1.09e+002±1.22e+000
F7 8.38e+002±6.33e+001 − 6.30e+002±4.68e+001
F8 4.78e+002±7.70e+001 − 2.95e+002±8.59e+001
F9 1.06e+003±2.40e+001 − 1.02e+003±2.00e+001
F10 1.55e+003±4.06e+001 − 1.21e+003±1.40e+002
− 9
+ 1
≈ 0

TABLE VIII
EXPERIMENTAL RESULTS OF EVOLS AND EHS OVER 25 RUNS WITH 3000

FES ON 10 TEST FUNCTIONS OF 30 VARIABLES, +, −, AND ≈ DENOTE
THAT THE RESULT OF EVOLS IS BETTER THAN, WORSE THAN, AND

COMPARABLE TO THAT OF EHS, RESPECTIVELY

Func GSM EHS
MeanError±StdDev MeanError±StdDev

F1 2.67e+000±4.02e-001 + 5.11e+000±4.79e-001
F2 2.16e-001±3.76e-001 − 2.04e-007±1.44e-007
F3 5.30e+001±1.15e+001 − 2.66e+001±8.18e-001
F4 -7.59e+001±2.70e+001 − -2.75e+002±1.26e+001
F5 1.37e+002±1.69e+000 − 1.21e+002±7.46e+000
F6 -8.80e+001±1.45e+001 − -1.11e+002±1.26e+000
F7 7.73e+002±5.46e+001 − 5.81e+002±3.97e+001
F8 4.45e+002±6.86e+001 − 2.85e+002±8.91e+001
F9 1.04e+003±1.91e+001 − 9.84e+002±3.14e+001
F10 1.52e+003±7.42e+001 − 1.07e+003±1.18e+002
− 9
+ 1
≈ 0

at 1000 FEs, 9 test functions at 2000 FEs and 9 test functions
at 3000 FEs, while EvoLS only performed better than EHS
on one test function at each of 2000 FEs and 3000 FEs.

Overall, EHS can give solutions of higher quality than GSM
and EvoLS with a specified number of fitness evaluations.
Thus, EHS is more appropriate for CEPs, for which only
limited computational resources available.

Moreover, when checking the true rank of the surrogate
model selected by EHS each time, i.e., the rank of the solution
generated through performing local search on this selected
surrogate model among all the solutions generated on all the
three surrogate models, and the true rank of the the surrogate
model selected by EvoLS in its framework, it was found that
EHS overall can achieve higher average rank than EvoLS does.
This can substantiate our previous claim that the selection
strategy of EHS is more reliable than that of EvoLS.

IV. CONCLUSION

Surrogate models are usually incorporated in EAs to better
solve CEPs. In surrogate-assisted evolutionary search, the
choice of surrogate modeling technique can affect the per-
formance of the evolutionary search. To address this issue,
we proposed a novel scheme in this work to adapt the
surrogate modeling technique in the memetic evolutionary
search process. The scheme differs from existing approaches
that try to address this issue in employing a hierarchical
structure of surrogates. The generated algorithm is called EHS.
To validate the efficiency of EHS, we conducted experiments
on 10 commonly used benchmark functions with a maximum
number of fitness evaluations of 3000 and two state-of-the-
art surrogate-assisted EAs (i.e., GSM and EvoLS) were used
for making comparisons. The experimental results showed that
EHS can overall achieved solution of higher quality than GSM
and EvoLS do on all the test functions at each of 1000 FEs,
2000 FEs, and 3000 FEs. Thus, EHS is more appropriate for
solving CEPs.
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