
Music-Aware Artificial Fireflies
to Sensor Relocation by a Robot Team

Rafael Falcon, Graduate Student Member, IEEE, Xu Li,
Amiya Nayak, Senior Member, IEEE and Ivan Stojmenovic, Fellow, IEEE

Abstract—Mobile robots can nowadays assist wireless sensor
networks (WSNs) in many risky scenarios that unexpectedly
arise during their operational lifetime. We focus on an emerging
kind of cooperative networking system in which a small team of
robotic agents lies at a base station. Their mission is to service
an already-deployed WSN by periodically replacing all damaged
sensors in the field with passive, spare ones so as to preserve
the existing network coverage. This novel application scenario
is here baptized as “multiple-carrier coverage repair” (MC2R)
and modeled as a new generalization of the vehicle routing
problem. A hybrid metaheuristic algorithm is put forward to
derive nearly-optimal sensor replacement trajectories for the
robotic fleet in a short running time. The composite scheme
relies on a swarm of artificial fireflies in which each individual
follows the exploratory principles featured by Harmony Search.
Infeasible candidate solutions are gradually driven into feasibility
under the influence of a weak Pareto dominance relationship. A
repair heuristic is finally applied to yield a full-blown solution.
To the best of our knowledge, our scheme is the first one in
literature that tackles MC2R instances. Empirical results indicate
that promising solutions can be achieved in a limited time span.

Index Terms—robot-assisted wireless sensor networks; sensor
relocation; vehicle routing problem; firefly optimization; har-
mony search; hybrid metaheuristics

I. INTRODUCTION

A wireless sensor network (WSN) [1] is a collection of
autonomous sensing nodes that communicate via wireless
links. They are deployed in indoor and outdoor scenarios to
monitor the region in an unattended fashion and report their
measurements to a central location. Yet in spite of their large
chain of successful applications in dissimilar domains, WSNs
are often unable to surmount many operational challenges that
unexpectedly arise during their lifetime such as resource de-
pletion (energy, memory, processing), connectivity disruption,
hardware/software faults, malicious attacks or harsh environ-
mental conditions.

Fortunately, the latest advances in multi-robot systems have
made possible for a WSN to be assisted by robotic agents.
The seamless integration of robotic and sensory devices has
been recently coined as a wireless sensor and robot network
(WSRN) [2]. When the robotic nodes are mainly aimed at
optimizing the performance of an autonomous WSN, we refer

R. Falcon, A. Nayak and I. Stojmenovic are with the School
of Electrical Engineering and Computer Science, University of Ot-
tawa, 800 King Edward Ave., Ottawa Ontario, K1N 6N5 Canada
{rfalc032,anayak,ivan}@site.uottawa.ca

X. Li is with the Institut National de Recherche en Informatique et en
Automatique (INRIA), Lille - Nord Europe, France xu.li@inria.fr

to the ensemble as a “robot-assisted wireless sensor network”
(RA-WSN). A RA-WSN [3] usually involves resource-rich,
mobile robots tending resource-constrained, stationary sensors.
We focus on a kind of robotic actuators that are mobile and
able to carry a limited number of sensors as payload.

A novel collaboration framework in which carrier robots
contribute to endow the WSN with fault-reactive capabilities
has been recently identified in [4]. It is assumed that the net-
work has been deployed somehow and one or more robots are
located at a base station, where data from every single sensing
unit are periodically received. Because of the abundance of
cheap sensors scattered, not all of them are actually needed to
provide area coverage. Hence, they may follow any distributed
scheduling algorithm (e.g. [5]) to decide which sensors will
go into sleep mode (passive units) and which will monitor the
region (active units).

Since the quality of the network coverage will be eventually
degraded due to failures of the active units, the mission of the
robotic team is to collect passive nodes all over the field and
drop them at the positions of the faulty sensors. A corporate
route plan (i.e. set of individual routes departing from and
ending at the base station) for robots to follow must be
derived. The goal is to minimize the cost of the coverage
repair operation (in terms of e.g. distance traveled, replacement
latency, etc.), while ensuring that the system quickly reacts to
sensor faults, i.e. time to find a corporate solution is usually
short, for a replacement action must be taken swiftly.

The previous problem is novel in literature. It was baptized
as carrier-based coverage repair (CBCR) and cast into the
combinatorial optimization world. In [4], the single-robot case
was tackled via an ant colony algorithm [6] that yielded good-
quality solutions in a limited time span. However, no light was
shed on how to solve CBCR when a robot team is available.
We address such an important scenario in this report and refer
to it as multiple-carrier coverage repair (MC2R) problem.

A simple way to tackle MC2R instances is by assigning
to each robot a disjoint subset of the damaged nodes (could
be empty) that it must replace with a disjoint set of passive
sensors. Then, the Nearest Neighbor (NN) heuristic could be
applied to shape each individual route, as shown in Fig. 1.
NN quickly computes a sub-optimal solution by selecting,
at each time step during the route construction process, the
nearest feasible node to be added to the route. A new route is
created according to a domain-specific criterion, e.g. whenever
the total distance walked by the robot exceeds a threshold.
Yet because a short delay after periodical data reporting from

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

sensors and before robotic actuation upon the environment
is often tolerated in many real-world RA-WSN applications,
more advanced search methods could be applied in order to
improve the quality of the robot team trajectories for sensor
relocation (see Fig. 2).

Fig. 1. Robots replacing damaged sensors. Trajectories computed via
the Nearest Neighbor heuristic. Active, passive and damaged sensors are
represented by green, yellow and red nodes, respectively.

Fig. 2. Robots replacing damaged sensors. Trajectories computed via the
proposed hybrid metaheuristic. Active, passive and damaged sensors are
represented by green, yellow and red nodes, respectively.

We model MC2R as a special case of a novel generalization
of the vehicle routing problem (VRP), here termed as the one-
commodity VRP with selective pickup and delivery (1-VRP-
SELPD). A hybrid metaheuristic algorithm is put forward to
solve MC2R instances. The composite scheme relies on a
swarm of artificial fireflies in which each individual follows
the exploratory principles featured by Harmony Search (HS).
Infeasible route plans are gradually driven into feasibility
under the influence of a weak Pareto dominance relationship.
A repair heuristic is finally applied to yield a full-blown
solution. To the best of our knowledge, our scheme is the first
one in literature that tackles the MC2R problem. Empirical
results indicate that promising solutions can be achieved in a
limited time span.

The remainder of the report is structured as follows. Sect.
II briefly reviews some relevant studies. Sect. III elaborates
on the mathematical formulation of the MC2R problem. The
building blocks of the proposed hybrid method are described
in Sect. IV whereas Sect. V unfolds the music-aware firefly

swarm. The empirical study and conclusions are outlined in
Sect. VI and VII, respectively.

II. RELEVANT WORK

A VRP-SELPD instance can be portrayed as a graph
G = (V,E). A graph vertex v ∈ V corresponds to either
a delivery or pickup customer. Let VD and VP denote the set
of delivery and pickup nodes, respectively, with VD∩VP = ∅.
Then V = VD ∪ VP ∪ {v1}, where v1 is the base station.
A graph edge eij ∈ E stands for the travel time/distance
between its two endpoints. Each delivery node demands a
certain amount of some commodity, which can be supplied
by the pickup nodes. A finite-size fleet of vehicles (each with
identical cargo capacity) lies at a central depot, from which
individual vehicle routes begin and end. The goal is to satisfy
the demand of all delivery nodes by visiting as many pickup
nodes as needed while minimizing the overall travel cost. A
vertex, if visited, can only welcome one vehicle exactly once.
A vehicle’s capacity must not be violated along its route.

One may realize that MC2R can be modeled as a special
VRP-SELPD instance in which delivery customers are dam-
aged sensors, pickup customers are passive sensors, vehicles
are mobile robots, pickups outnumber deliveries and any
demand/supply of the commodity (sensors) is exactly one unit.

Close to VRP-SELPD in literature are the pickup-and-
delivery VRP (PDVRP) [7], the Team Orienteering Problem
(TOP) [8][9], its capacity-aware version (CTOP) [10] and the
Capacitated Profitable Tour Problem (CPTP) [10].

Like in PDVRP, delivery and pickup customers are unpaired
and the latter may be used to meet the demand of the former.
Yet in PDVRP all graph vertices are to be visited whereas
a VRP-SELPD solution includes all delivery nodes plus any
subset of pickups that meets the corporate demand.

TOP, CTOP and CPTP are similar to VRP-SELPD in that
they may leave some graph nodes out of the set of vehicle
routes. These problems are grouped under the label “VRP
with profits” because a reward/profit is collected after visiting
each node. TOP and CTOP aim at maximizing the total profit
without violating each vehicle’s maximum time constraint
whereas CPTP strives to optimize the difference between
maximum collected profit and total cost. However, these three
problems are not concerned with the demand satisfaction of
delivery nodes by using the amount of commodity provided
by the pickup nodes. Moreover, VRP-SELPD does not restrict
the travel time/distance of the vehicles.

III. THE MC2R PROBLEM FORMULATION

In this section, MC2R is formally modeled as a unitary
1-VRP-SELPD instance. Any MC2R scenario can be rep-
resented by a tuple T = ⟨G, q⃗, R,Q0, Q⟩. A robot team
R = {r1, r2, ...rm} of exactly m agents, each with initial
cargo Q0 and capacity Q, has to pick up and deliver sensors
in a WSN represented by a graph G and a demand vector q⃗.

The sensor network is described by a complete graph
G = (V,E) where V = {v1, v2, . . . , vn} is the vertex set
and E is the edge set, with eij being the directed edge from

2

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

vi to vj . Each edge has an associated travel cost ckij when
traversed by robot rk ∈ R, k = 1..m. Elements of V are
either passive sensors (pickup customers) or damaged sensors
(delivery customers). Each customer vi has a unitary demand
qi (−1 for pickup customers and 1 for delivery customers) and
q⃗ = (q1, q2, . . . , qn). Node v1 represents the base station with
demand q1 = 0, VD is the set of delivery customers and VP is
the set of pickup customers. The following statements hold.

V = {v1} ∪ VD ∪ VP

VD = {vi ∈ V : qi = 1}
VP = {vi ∈ V : qi = −1}
VD ∩ VP = ∅

A unique type of commodity (sensors) is to be transported
by the robots from one place to another. For simplicity, we
will assume that all robots have the same maximum cargo
capacity Q and initial cargo Q0 (0 ≤ Q0 ≤ Q). Not all graph
nodes have to be visited. To ensure the service of all damaged
sensors, a delivery node is assigned a profit pi of 1. The profit
pi of a pickup node vi and the base station v1 is set to zero.

The goal is to find a minimal-cost feasible route plan
Φmin = (φ⃗1, φ⃗2, . . . , φ⃗z), 1 ≤ z ≤ m, where φ⃗i is an
individual robot route. A route plan Φ is regarded as feasible
if all its routes are disjoint (i.e. have no nodes in common),
each individual route is a Hamiltonian cycle originated at the
base station, all damaged nodes are corporately replaced with
passive nodes, each robot returns empty to the base station (i.e.
no extra passive node is collected) and the robot’s capacity
constraint is never violated along any route. The cost of a
route plan is defined here as the total distance traveled by
all robots, its cardinality stands for the number of routes it
contains and its length refers to the total number of nodes in
it, including the base station. More formally, for a given tuple
T , the cost, cardinality and length of any feasible route plan
Φ can be calculated as in (1), (2) and (3), respectively.

f(Φ) =
∑

φ⃗ ∈ Φ

∑
eij ∈ φ⃗

cij (1)

|Φ| = number of routes in Φ (2)

len(Φ) = 2 · |VD| −Q0 + |Φ| (3)

with cij being the Euclidean distance between vi and vj .
Decision variables are defined as follows:
• xk

ij = 1 if edge eij has been visited by robot k, else 0
• yki = 1 if node vi has been visited by robot k, else 0
• lkij = load of the k-th robot traveling along edge eij

This leads to the following integer linear programming
formulation:

Min

R∑
k=1

∑
eij ∈ E

ckij · xk
ij

subject to

m∑
k=1

∑
vj ̸=vi

xk
ij ≤ 1 ∀vi ̸= v1 (4)

m∑
k=1

∑
vi ̸=vj

xk
ij ≤ 1 ∀vj ̸= v1 (5)

∑
vj∈V

xk
1j = 1 ∀rk ∈ R (6)

∑
vi∈V

xk
i1 = 1 ∀rk ∈ R (7)∑

vi∈V

xk
ij −

∑
vi∈V

xk
ji = 0 ∀vj ̸= v1,∀rk ∈ R (8)∑

vj ̸=v1

lk1j = Q0 ∀ rk ∈ R (9)

∑
vj ̸=vi

lkji −
∑
vj ̸=vi

lkij = qiy
k
i ∀vi ̸= v1,∀rk ∈ R (10)

0 ≤ lkij ≤ Qxk
ij ∀eij ∈ E, ∀rk ∈ R (11)

m∑
k=1

∑
vi∈V

piy
k
i = pmin (12)∑

vi∈V

piy
k
i > 0 ∀rk ∈ R (13)∑

vi∈V

lki1 = 0 ∀rk ∈ R (14)

lkij is integer ∀eij ∈ E, ∀rk ∈ R (15)

xk
ij ∈ {0, 1} ∀eij ∈ E, ∀rk ∈ R (16)

yki ∈ {0, 1} ∀vi ∈ V, ∀rk ∈ R (17)

The objective function minimizes total costs, expressed in
terms of total distance traveled by all robots to fix all damaged
nodes. Constraints (4) and (5) ensure that each node except
the base station is visited at most once. Equalities (6) and
(7) guarantee that each robot departs from and returns to the
base station. This does not imply that all robots will be used to
construct the route plan, for a robot rk may remain at the base
station by solely choosing the edge xk

11 = 1. Preservation of
the flow per individual route is achieved through (8). Notice
that the presence of (8) renders either (4) or (5) redundant,
but we have decided to include both for the sake of clarity.
Each robot leaves v1 with an initial load Q0 as stated in
(9). Expressions (10) and (11) represent a robot’s loading
constraints. The difference in load of a robot entering and
leaving a node must equal the demand of that node. A robot
can never carry more than its maximum capacity. Constraint
(12) ensures that all damaged units are visited by the robotic
fleet. The total profit collected in the route plan is set to
a minimum value pmin, equal to the number of delivery
nodes |VD|. Since only delivery customers have a profit of 1,
these nodes are automatically included in the solution. Each
individual route must repair at least one damaged sensor,
as constraint (13) indicates. Every robot must return empty

3

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

to the base station according to (14), which means that all
passive sensors picked in the route have been dropped at the
coordinates of the damaged nodes. Finally, constraints (15),
(16) and (17) define the domain of the decision variables.

IV. FIREFLY ALGORITHM AND HARMONY SEARCH

This section explains in short the fundamentals of the Firefly
Algorithm (FA) and HS, the building blocks of the hybrid
approach unrolled in Sect. V.

A. Firefly Algorithm

This metaheuristic method was enunciated in [11] after
drawing inspiration from the phenomenon of bioluminescent
communication featured by firefly insects in tropical countries.
They produce short and rhythmic flashes to attract potential
prey or other fireflies for mating purposes. The brighter a
firefly flashes, the higher the chance that other fireflies will
be drawn towards it.

In FA, each individual in a swarm S of size M = |S|
encodes a candidate solution to the optimization problem in the
form of a position vector X⃗i = (Xi1, . . . , XiN), i = 1, . . . ,M
in the N -dimensional search space. The brightness of any
firefly I0(X⃗i) is inversely proportional to its fitness value
f(X⃗i) in the minimization case. A firefly X⃗i will feel drawn
towards any other individual X⃗j brighter than itself with
a strength represented by the function β(X⃗i, X⃗j). The best
firefly in the swarm X⃗g will perturb its position vector with a
controlled amount of randomness so as to favor exploration.

Though initially formulated for numerical optimization
problems, discrete FA implementations e.g. [12] have yielded
encouraging results in the combinatorial optimization arena.

B. Harmony Search

HS is a simple yet powerful music-inspired metaheuristic
scheme [13], since the improvisation process of any musician
in his pursuit of harmony is analogous to the search process
in the optimization realm.

A candidate solution (harmony) X⃗i is a collection of pitches
(Xi1, . . . , XiN). To improvise a new pitch Xij , the musician
has three options: (1) to draw a good pitch from the Harmony
Memory (HM), an elitist data structure containing HMS high-
quality harmonies; (2) to slightly adjust the previously chosen
pitch or (3) to come up with a brand new pitch.

Good past pitches are drawn from the HM with a probability
HMAR (HM acceptance rate) and subsequently twisted with
probability PAR (pitch adjustment rate). The third choice is
done entirely at random. This pitch improvisation process is
repeated until an entire harmony X⃗i is completed. It replaces
the worst harmony in HM if X⃗i is of superior quality.

V. HARMONY-SEEKING FIREFLIES FOR MC2R

Given the intrinsic complexity of solving a MC2R instance
and the usually short time allotted to come up with a feasible
route plan of good quality (due to the tight responsiveness
constraints imposed on the WSN), a harmony-seeking firefly
algorithm (HSFA) is put forth. It can be envisioned as a

TABLE I
MC2R PROBLEM DESCRIPTORS AND HSFA PARAMETERS

Symbol Sampling Range Description
Q 1 - 5 Maximum robot cargo capacity.
R 2 - 5 Number of robots in the team.
NS 30 - 500 Total number of sensor nodes.
DN 5% - 25% Percentage of delivery nodes.

maxCPUTime 5 - 600 sec Maximum time for computations.
M 20 - 60 Swarm size (number of fireflies).

HMAR [0;1] HM Acceptance Rate. Probability
with which a firefly will draw past
good solutions from the HM.

PAR [0;1] Pitch Adjustment Rate. Probability
with which a firefly will perturb the
solution drawn from the HM.

pElite [0;1] Probability with which a firefly will
select its personal-best solution as
informer for another firefly. Other-
wise, it will select its current posi-
tion as informer.

pR 20% - 80% Percentage of pickup nodes in a
firefly’s position that will be re-
placed with unvisited pickups.

firefly swarm in which each member follows the exploratory
principles featured by HS. In fact, the HM resides collectively
in the swarm (i.e. HMS = M) rather than in a separate
data structure in memory. It stores the personal-best position
of every firefly and is dynamically updated by the fireflies
themselves as their personal bests improve over time. The
HSFA pseudocode is outlined in Alg. 1.

Since browsing across the feasible solution space alone is
time-consuming (owing to the number of capacity violations
and wrongly allocated customer types that could emerge
in individual routes), we conduct the search starting from
very poor, infeasible solutions and gradually drive them into
feasibility under the influence of a weak Pareto dominance
relationship, as described in Sect. V-C. This phase consumes
around 98% of the available CPU time (which usually varies
between 5 ∼ 600 sec). The remaining 2% is set aside to
construct a feasible route plan out of the best-performing
infeasible solution found thus far. This is done by the repair
heuristic in Sect. V-D, which can indeed strike to some extent
on the overall quality of the best infeasible candidate in order
to return a full-blown, feasible solution when the CPU time
elapses. In practice, this degradation of the final solution’s
performance grows with the network size (number of WSN
nodes) yet can be conveniently controlled by discarding steep
quality-lowering repair steps.

A. Algorithm’s Parameters

Table I displays the MC2R problem descriptors and HSFA
parameters. While the former (first five table entries) have
their values dictated by WSRN operational constraints, proper
values for the latter (remaining table entries) were learned after
a comprehensive empirical analysis described in Sect. VI.

B. Solution Encoding

A cyclic path representation is used to encode the
vehicle route plan in the firefly’s position, e.g. X⃗i =

4

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

Algorithm 1 HSFA for MC2R problem instances
Input: M , Q, R, maxCPUTime, HMAR, PAR, pElite, pR

Output: Best-ever route plan found X⃗g

1: initializeDataStructures();
2: for i = 1 to M do ◃ initialize swarm
3: X⃗i ← generateNewSolution();
4: end for
5: updatePickupUsage();
6: while tic() ≤ 98% maxCPUTime do
7: X⃗g ← EvaluateSwarmBrightness();
8: for i = 1 to M do
9: X⃗ ′

i ← X⃗i;
10: if rand() ≤ HMAR then ◃ X⃗i draws from HM
11: follower ← false;
12: for j = 1 to M do
13: if I0(X⃗j) ≻ I0(X⃗i) then
14: follower ← true;
15: X⃗∗

j ← chooseInformer(pElite);
16: β ← attractiveness(I0(X⃗i), I0(X⃗∗

j));
17: X⃗ ′

i ← copyFromInformer(X⃗∗
j , X⃗ ′

i , β);
18: if rand() ≤ PAR then
19: X⃗ ′

i ← perturbSolution(X⃗ ′
i);

20: end if
21: updateHM(X⃗ ′

i);
22: end if
23: end for ◃ j loop
24: if not follower then
25: X⃗ ′

i ← generateNewSolution();
26: updateHM(X⃗ ′

i);
27: end if
28: else ◃ improvise a new firefly
29: X⃗ ′

i ← generateNewSolution();
30: updateHM(X⃗ ′

i);
31: end if
32: X⃗i ← X⃗ ′

i;
33: end for ◃ i loop
34: updatePickupUsage();
35: end while
36: X⃗g ← repairBestSolution(X⃗g);
37: return X⃗g;

(4, 5, 1, 6, 2, 7, 1, 3) means that two routes, viz 1-6-2-7-1 and
1-3-4-5-1, originate and conclude at the base station v1. The
length (number of components) of firefly X⃗i’s position will
vary from one swarm member to another, being 2·|VD|+|R|i,
where |R|i is the number of routes encoded in X⃗i (i.e. number
of 1’s in the vector) and it ranges from 1 to R. Hence, we are
in presence of a variable-length firefly swarm.

C. Navigation across the Infeasible Search Space

The brightness of a firefly X⃗i is defined as I0(X⃗i) =
(f1(X⃗i), f2(X⃗i), f3(X⃗i), f4(X⃗i)), where f1(·) is the number
of robots in the route plan, f2(·) the total distance traveled,
f3(·) the number of wrong nodes in the solution (includes

missing deliveries and extra pickups) and f4(·) the number
of capacity violations. The first objective aims at minimizing
the number of robots engaged in the current sensor relocation
task. This is desirable since the “idle” robots can replenish
their batteries at the base station and be dispatched in case
of emergency to a conflictive region in the deployment field.
Objective 2 is improved as shorter route plans are discovered,
which means that the network repair latency is shortened too.
The last two objectives capture the infeasibility permeating a
route plan X⃗i. As the algorithm progresses, the minimization
of the four objectives is pursued.

It is said that firefly X⃗j is brighter than X⃗i and denoted by
I0(X⃗j) ≻ I0(X⃗i) if X⃗j weakly dominates X⃗i, i.e. at least one
objective is improved, ∃k | fk(X⃗j) < fk(X⃗i), k = 1..4. If
that happens, X⃗j becomes the attractor (or informer) for X⃗i,
which is referred to as the follower and will try to copy some
good components from X⃗j .

The procedure in line 1 computes the distance matrix D(·, ·)
between any pair of graph vertices and sets the pickup usage
vector P(·) to 0⃗. The former will aid in computing the nearness
of a pickup to the set of reported delivery nodes whereas the
latter will play a pivotal role in selecting those pickup units
that have not been quite represented in previous firefly swarms,
thus fostering the exploration of neglected pickups and their
inclusion in the group of route plans encoded by the swarm
members at the current iteration.

The entire firefly swarm is initialized in lines 2–4 via
generatenewSolution(), which randomly decides on a number
of routes 1 ≤ r ≤ R, add r 1’s and all delivery nodes and then
shuffles the vector. The remaining components are filled with
pickups by the roulette wheel selection rule shown in (18).

pj =
φj/(Pj + 1)∑

k∈VP

[φk/(Pk + 1)]
(18)

where pj is the probability that the pickup node vj will be
chosen, φj = 1/

∑
vk∈VD

D(vj , vk) its “potential” and Pj its
usage counter value. Lines 5 and 34 update the P vector by
adding to the present counter for each vj the number of times
it appears in the encoding of all members of the current swarm.
The idea behind the selection rule is to promote the inclusion
of those pickups that have been least used in earlier firefly
swarms and exhibit good potential, i.e. their geographical
location lies fairly close to many delivery units.

Line 7 calculates the brightness of every individual and
initializes/updates the best firefly X⃗g with an arbitrary non-
dominated solution in the Pareto front. The tic() function
checks the current clock time and rand() generates a number
∼ U(0, 1). In line 15, X⃗j will recommend its personal-best
position (stored in the HM) as informer for X⃗i with probability
pElite or its current encoding otherwise.

The strength of the attractiveness β in line 16 between
follower X⃗i and its informer X⃗∗

j is given by the average
improvement (in %) of the informer over the follower across
all improving objectives. The method in line 17 copies from

5

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

the informer to X⃗i
′

exactly β% consecutive vector compo-
nents, starting at an arbitrary location and removing duplicated
entries in the follower. This HM-borrowed subsolution is
probabilistically perturbed in line 19 by applying three local
search operators in the following order: (1) Delivery Exchange,
which swaps two random delivery nodes lying in two arbi-
trarily selected routes; (2) Pickup Exchange, which does the
same but with pickup nodes and (3) Pickup Replacement,
which substitutes pR% of the pickups in the firefly encoding
with more profitable, unvisited ones as per the rule in (18).
Notice that the application of the first two operators may not
necessarily improve the candidate solution X⃗ ′

i yet the last
operator only modifies it if a better candidate was obtained.

The updateHM() method replaces X⃗i’s personal best in
the HM with X⃗ ′

i if I0(X⃗ ′
i) ≻ I0(X⃗i) and updates X⃗g as well.

Finally, X⃗g will be turned into a feasible solution in line 36
should signs of infeasibility still persist as explained next.

D. Building a Feasible Final Route Plan

Our repair heuristic takes X⃗g and builds a feasible final
solution if needed by inserting missing deliveries, removing
extra pickups and rearranging nodes so as to get rid of any
vehicle capacity violations. The first operation may involve
multiple routes whereas the two latter may apply to each
individual route.

1) Insert missing deliveries: This implies expelling some
pickups from the route plan that could have been copied
from diverse attractors and laying missing deliveries in
their positions. For each missing delivery vd ∈ VD, find
the list of pickup locations LP cross-route-wise where
insertion of vd does not increase f4(·). Try all locations
in LP (or, if |LP | = ∅) and retain the one that optimizes
f2(·). Place vd there.

2) Remove redundant pickups: It must be ensured that, for
each route R ∈ R, where R is the set of routes encoded
in X⃗g , |VD|R = |VP |R, i.e. there are as many pickups
in the route as deliveries will be visited. Therefore, each
delivery vd ∈ R will choose the closest pickup vp ∈ R
that is yet unselected. All remaining pickups in the route
will be removed. This is applied to every route R ∈ R
with disparate number of pickups and deliveries.

3) Eliminate capacity violations: For each route R ∈ R
and starting from v1, find the location y where the first
capacity violation occurs. Then swap the node at y with
a node at z > y that removes the violation and optimizes
f2(·). Proceed from this point on doing the same for each
detected capacity violation.

VI. EMPIRICAL ANALYSIS

Since MC2R is a brand new problem first solved by HSFA,
there is no competing scheme that serves as benchmark.
Hence, we will shed light on a few HSFA’s algorithmic
properties like its exploration ability and the extent of the final
solution degradation brought about by the repair heuristic.

TABLE II
WSN SPATIAL DISTRIBUTIONS

Distribution Depot δ Delivery Node di Pickup Node pi
1 (0, 0) U U
2 (0, 0) U N (di, σ

2)
3 (0, 0) N (δ, σ2) N (δ, σ2)
4 (0, 0) N (δ, σ2) N (di, σ

2)
5 U U U
6 U U N (di, σ

2)
7 U N (δ, σ2) N (δ, σ2)
8 U N (δ, σ2) N (di, σ

2)
9 N (r, σ2) N (r, σ2) N (r, σ2)

A. Simulation Setup

All simulations were conducted in MATLAB R2009b on
an Intel Core i7 CPU 860 @ 2.80 GHz with 6 GB of RAM
under Windows 7 Home Premium with a 64-bit architecture.
They relied on synthetic scenarios, each holding information
about the problem descriptors (WSRN configuration) and the
algorithm’s parameters. Their values have been uniformly
drawn from the sampling ranges portrayed in Table I.

Once the problem descriptors are known, sensors are spa-
tially distributed in a virtual field of 1, 000×1, 000 units. First,
the depot’s location δ (where the robot team lies) is chosen
either deterministically at the field center (0, 0), or randomly
following a bivariate uniform distribution U , or stochastically
following a bivariate normal distributionN (r, σ2) with r being
a uniform random 2D point. Second, the coordinates di of
the delivery nodes are set either randomly following U , or
stochastically centered around the depot after N (δ, σ2), or
stochastically centered around the random point r following
N (r, σ2). Finally, the pickup nodes are positioned either
randomly after U , or stochastically following N (di, σ

2) and
surrounding the coordinates di of an arbitrary damaged sensor,
or stochastically centered around the depot through N (δ, σ2),
or stochastically centered around r via N (r, σ2). The nine
different spatial distributions are summarized in Table II.

For the simulations, 50 MC2R data scenarios have been cre-
ated by randomly drawing values for the problem descriptors
and HSFA’s parameters from the sampling ranges in Table I
and choosing an arbitrary spatial distribution from Table II.

B. Simulation Results

The best route plan found by HSFA in 10 independent runs
per data scenario is depicted in Table III as well as the final
feasible solution returned by the repair heuristic.

Notice how the number of wrongly allocated nodes and
capacity violations remain reasonably bounded within 50% of
the total number of nodes in the WSN. This speaks about
the ability of the weak Pareto dominance relationship to
gradually drive infeasible solutions into the feasible route plan
space, even in networks with hundreds of nodes. In nearly all
cases, the number of robots engaged in a sensor replacement
operation is inferior to the robotic fleet size, meaning that
idle robots remain at the base station ready to respond to any
emergency in the field.

6

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

TABLE III
BEST MC2R SOLUTION COMPUTED BY HSFA

Problem Instance Descriptors Best Infeasible Route Plan Final Route Plan Diff NN Heuristic Diff
ID NS DN Q R CPU f1 f2 f3 f4 f1 f2 (%) f2 (%)

1 31 2 5 4 548 2 1341.42 0 0 2 1341.42 0 1341.42 0
2 40 4 1 2 184 2 792.65 0 0 2 792.65 0 792.65 0
3 58 13 4 3 241 3 3380.42 10 16 3 3421 1.2 5165.71 51
4 71 7 5 5 328 3 1634.89 9 14 3 2092.66 28 2427.49 16
5 77 12 4 4 493 3 1336.22 16 35 3 1416.39 6 1430.55 1
6 78 8 4 2 349 2 3466.67 13 28 2 4125.34 19 4249.1 3
7 84 4 5 4 209 3 919.61 42 21 3 1351.83 47 1811.45 34
8 87 17 4 3 466 3 3088.89 8 5 3 3922.89 27 4275.95 9
9 97 14 3 3 176 2 4263.11 45 13 2 5073.1 19 6645.76 31

10 118 18 1 2 71 2 3116.68 11 8 2 4269.85 37 6233.98 46
11 120 18 4 3 477 3 4009.37 29 16 3 5933.87 48 4078.82 -45
12 133 29 4 4 111 3 2772.22 27 26 3 3659.33 32 4647.35 27
13 170 9 1 5 255 4 3369.25 23 35 4 4514.8 34 6997.94 55
14 172 40 4 2 198 2 5827.99 51 52 2 6818.75 17 10569.06 55
15 184 26 4 3 371 2 3346.23 56 19 2 4751.65 42 7412.57 56
16 185 44 1 2 103 2 7934.13 6 34 2 8013.47 1 12020.21 50
17 194 37 2 2 364 2 2604.33 14 52 2 3281.46 26 4692.49 43
18 200 20 2 5 508 2 4531.96 12 50 2 6208.79 37 7140.11 15
19 232 14 4 4 522 2 3587.32 36 9 2 5129.87 43 8207.79 60
20 232 42 4 2 330 2 3958.7 32 14 2 4117.05 4 5969.72 45
21 257 51 4 4 193 4 5404.42 54 43 4 7890.45 46 8048.26 2
22 268 16 4 5 305 4 1508.23 71 116 4 1945.62 29 2470.94 27
23 275 58 3 3 276 2 2828.43 38 120 2 3846.66 36 4192.86 9
24 314 35 3 2 119 2 3572.62 78 69 2 3965.61 11 6067.38 53
25 316 60 2 4 323 4 5719.65 2 36 4 8579.48 50 10295.38 20
26 328 43 4 2 506 2 2776.6 1 42 2 3637.35 31 4764.93 31
27 342 34 5 5 183 3 4179.05 61 56 3 5307.39 27 6687.31 26
28 343 41 4 3 302 2 3471.05 13 155 2 4199.97 21 3787.97 -11
29 349 77 4 4 276 3 8724.52 132 0 3 11516.37 32 11861.86 3
30 350 63 5 2 297 2 7718.44 144 30 2 8413.1 9 9422.67 12
31 352 46 1 2 119 2 5215.03 69 67 2 5945.13 14 7847.57 32
32 355 43 5 5 483 4 4277.62 106 0 4 4277.62 0 5090.37 19
33 361 51 1 3 529 3 3271.76 110 140 3 4416.88 35 6669.49 51
34 362 51 5 4 348 3 4538.56 34 82 3 4765.49 5 6338.1 33
35 371 45 4 2 133 2 6602.44 3 127 2 7130.64 8 9055.91 27
36 372 48 1 4 383 2 2949.46 76 179 2 3155.92 7 3503.07 11
37 385 69 4 3 131 3 5155.78 23 55 3 6444.73 25 8313.7 29
38 392 43 5 3 384 3 6730.79 86 48 3 8480.8 26 12042.74 42
39 402 24 5 3 68 3 4614.49 55 16 3 5721.97 24 8525.74 49
40 420 34 5 2 586 2 3006.05 141 36 2 3066.17 2 3188.82 4
41 438 57 1 4 388 3 6988.69 183 25 3 9155.18 31 8521.39 -7
42 438 96 4 3 77 2 5925.91 202 35 2 8237.01 39 9802.04 19
43 440 110 3 5 292 3 11215.45 146 81 3 12224.84 9 17603.77 44
44 441 106 1 4 49 3 11449.52 66 154 3 15685.84 37 17568.14 12
45 446 36 3 3 169 3 2893.97 142 115 3 3646.4 26 3682.86 1
46 458 64 3 2 151 2 7901.82 132 94 2 9482.18 20 14507.74 53
47 460 87 5 5 342 5 7400.6 18 204 5 8288.67 12 9697.74 17
48 470 71 5 2 520 2 3746.04 183 207 2 5019.69 34 7479.34 49
49 481 63 1 4 356 2 7663.47 215 24 2 8506.45 11 9357.1 10
50 482 58 3 3 50 3 3524.6 230 165 3 4370.5 24 5769.06 32

Another encouraging observation is the fact that the repair
heuristic only degrades the best infeasible solution by 26.36%
on average in terms of the total distance traveled (objective
2). This means that the three-stage procedure to fix the best
infeasible candidate solution is able to significantly attenuate
the effect of the node insertion/removal operations.

The last two columns of Table III contrast the final route
plans yielded by HSFA with those obtained after applying
the NN heuristic. To ensure a fair comparison baseline with
HSFA, the number of routes in NN equals the number of
robots allocated by HSFA in the final route plan. Through
statistical validation we can claim that HSFA is able to find
significantly better solutions in terms of f2 in 90% of the
data scenarios under consideration, as corroborated via a t-test
conducted at 5% significance level. This justifies the time spent
in the calculation of the sensor replacement trajectories for the
mobile robots, as the network repair latency and robot energy
consumption are substantially minimized when HSFA’s repair
schedule is followed as opposed to the route plans derived by
NN.

VII. CONCLUSIONS AND FUTURE WORK

We have targeted MC2R, a novel problem of practical
relevance for robot-assisted wireless sensor networks. Through
the collective and periodic action of the robotic team, the
WSN can self-heal as soon as faulty nodes stem during its
operational period, thus preserving the desired coverage.

A new generalization of the vehicle routing problem, here
coined as VRP-SELPD, has been formulated and MC2R
modeled as a special case of a VRP-SELPD scenario. Its
solution was subsequently sought via HSFA, a metaheuristic
algorithm leaning upon the hybridization of artificial fireflies
and harmony search. This is the first scheme in literature that
tackles MC2R scenarios. The conducted empirical analysis
indicates that promising solutions can be achieved in a limited
time span by the proposed hybrid method.

Our ongoing research efforts are directed towards the esti-
mation of HSFA’s parametric sensitivity. In this sense, Reactive
Search Optimization [14] techniques are under consideration
to shield the algorithm as much as possible against entangled,
local-minima-plagued fitness landscapes. A thorough algorith-
mic characterization per WSN spatial distribution is another
short-term goal of practical relevance.

7

IEEE CIS 2011 “Walter Karplus” Graduate Student Research Grant

REFERENCES

[1] K. Sohraby, D. Minoli, and T. F. Znati, Wireless Sensor Networks:
Technologies, Protocols and Applications. Wiley Interscience, 2007.

[2] A. Nayak and I. Stojmenovic, Wireless Sensor and Actuator Networks:
Algorithms and Protocols for Scalable Coordination and Data Commu-
nication. John Wiley & Sons, 2010.

[3] R. Falcon, A. Nayak, and I. Stojmenovic, “Robot-Assisted Wireless Sen-
sor Networks: Recent Applications and Future Challenges,” in Mobile
Ad Hoc Networking: the Cutting Edge Directions, S. Basagni, M. Conti,
S. Giordano, and I. Stojmenovic, Eds. Wiley, 2012, to appear.

[4] R. Falcon, X. Li, A. Nayak, and I. Stojmenovic, “The One-Commodity
Traveling Salesman Problem with Selective Pickup and Delivery: an
Ant Colony Approach,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), Barcelona, Spain, 2010, pp. 4326–
4333.

[5] A. Gallais, J. Carle, D. Simplot-Ryl, and I. Stojmenovic, “Localized
Sensor Area Coverage with Low Communication Overhead,” IEEE
Transactions on Mobile Computing, vol. 7, no. 5, pp. 661–672, 2008.

[6] T. Stützle and H. H. Hoos, “MAX-MIN Ant System,” Future Generation
Computer Systems, vol. 16, pp. 889–914, June 2000.

[7] M. Dror, D. Fortin, and C. Roucairol, “Redistribution of Self-Service
Electric Cars: a Case of Pickup and Delivery,” INRIA-Rocquencourt,
Tech. Rep. RR-3543, 1998.

[8] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The Team Orienteering
Problem,” European Journal of Operational Research, vol. 88, no. 3,
pp. 464 – 474, 1996.

[9] C. Archetti, A. Hertz, and M. G. Speranza, “Metaheuristics for the
Team Orienteering Problem,” Journal of Heuristics, vol. 13, pp. 49–76,
February 2007.

[10] C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza, “The Capaci-
tated Team Orienteering and Profitable Tour Problems,” Journal of the
Operational Research Society, vol. 60, no. 6, pp. 831–842, 2009.

[11] X.-S. Yang, “Firefly Algorithms for Multimodal Optimization,” in Pro-
ceedings of the 5th Symposium on Stochastic Algorithms, Foundations
and Applications (SAGA), LNCS 5792, Sapporo, Japan, 2009, pp. 169–
178.

[12] R. Falcon, M. Almeida, and A. Nayak, “Fault Identification with Binary
Adaptive Fireflies in Parallel and Distributed Systems,” in 2011 IEEE
Congress on Evolutionary Computation (CEC), New Orleans, Louisiana,
June 2011, pp. 1359–1366.

[13] Z. W. Geem, Music-Inspired Harmony Search Algorithm: Theory and
Applications, 1st ed. Springer, 2009.

[14] R. Battiti, M. Brunato, and F. Mascia, Reactive Search and Intelligent
Optimization, ser. Operations Research/Computer Science Interfaces.
Springer Verlag, 2008, vol. 45.

8

