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Abstract—Computational intelligence has been largely inspired 

by the human brain, but has been seldom used for understanding 

the molecular mechanism of human brain functions of learning 

and memory. This study proposes, for the first time, a 

computational intelligence methodology inspiring memetic 

computing to discover, at the molecular level, a central component 

of the glutamatergic system of the human brain, the glutamic acid. 

Glutamic acid is the most abundant amino acids in the central 

nervous systems (CNS) in the human brain where serving as an 

excitatory neurotransmitter. Recent studies have shown its role in 

the functions of learning and memory as well as pathogenesis of 

many neurodegenerative disorders. Unlike most 

neurotransmitters, glutamic acid is characterized by a high degree 

of chemical flexibility. As such, it possesses a large number of low-

energy conformations, which allow for selective interaction with 

various transporter and receptor proteins, comprising the 

glutamatergic systems in the CNS. Identifying these low-energy 

stable conformations of glutamic acid may open new doors for 

understanding the details of the interaction inside the 

glutamatergic system, allowing better understanding of the 

learning process as well as the design of new, yet effective drugs 

for neurodegenerative disorders, including Alzheimer disease. In 

this study, a novel molecular memetic algorithm (MOL-MA) has 

been proposed. MOL-MA is mainly composed of specially 

designed molecular evolutionary operators coupled with a life-

time learning procedure and valley adaptive clearing scheme for 

the discovery of multiple precise glutamic acid isomers. The 

energies as well as first and second derivatives of glutamic acid 

structure, used in this algorithm during the evolution process, are 

calculated using an ab initio approach, namely, Hartree–Fock 

method, with the STO-3G basis set. The proposed algorithm has 

been compared against several of the state of the art algorithms. 

Experimental results have shown the advantage performance of 

the proposed algorithm in terms of number of uncovered isomers 

and computational cost incurred. This study has successfully led 

to a discovery of unprecedented database of 523 glutamic acid 

isomers. 

 

Index Terms— Glutamic acid, neurotransmitters, Isomers, 

Optimization, Memetic and Evolutionary Computation 

 

I.  INTRODUCTION 

LUTAMIC ACID exists in ample quantity in almost every 

cell type and more importantly in mammalian brain cells. 

Glutamic acid is known as a fast synaptic neurotransmitter in 

the central nervous system (CNS), which plays an essential role 

in several form of communication ranging from excitatory 

transmission to more complex signal processing necessary for 

learning and memory [1-4]. It has also been shown to be 

involved in several pathological conditions, including epilepsy, 

Alzheimer's disease, Parkinson's, and schizophrenia [5, 6]. The 

ability of glutamic acid to participate in such a wide range of 

activity is mostly due to the large number of transporters and 

receptors proteins that are all not only accessible to, but also 

activated by. Due its chemical flexibility, it can, in addition, 

accept many different low-energy conformations. As such, it 

has a greater ability in selective binding and varying receptor 

modulation effects when interacting with neuronal transporters 

and receptors. In particular, some conformations may work as 

activators, some other as inhibitors [7]. Inhibition of neuronal 

transporters and/or over-activation of receptors are believed to 

be involved in many destructive molecular cascades in 

neuronal cells[8].  

As recent studies have shown the involvement of the glutamic 

acid in the functions of learning and memory and pathological 

disorders, chemists and neurologists have started to synthesize 

some Glutamate isomers for the purpose of studying their 

potency and inhibition effect on the glutamatergic system 

components. Nine isomers are thus successfully designed 

theoretically using the stereochemistry principles with the 

guide of Newman's diagram. Few isomers, however, have been 

experimentally identified to date. Moreover, experimental 

studies are most often challenging and more importantly 

expensive. Alternatively, glutamic acid isomers can be 

efficiently identified through optimization methods which, 

among the computational methods, is the most commonly used 

for such a purpose.  

In the context of optimization, the task of isomers identification 

in molecular systems is equivalent to the undertaking of 
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multiple minima identification. However, finding multiple 

optima for molecular and chemical systems is far more 

challenging than that on mathematical test functions. The core 

challenges emerge from the presence of a large number of 

critical points including maxima and saddles - which increase 

exponentially in chemical and molecular systems - may 

hampered the progress of search for local optima. Finding local 

optima using high fidelity first-principles calculations also 

makes the search even more challenging due to the high 

computational cost of solving the Schrödinger equations. The 

challenge escalates exponentially with increasing molecular 

size. In particular, glutamic acid consists of 19 atoms where 

each atom in the molecule has three additional degrees of 

freedom. With each additional degree of freedom, there is an 

inseparably intertwined exponentially scaling positional 

optimization problem. Single first-principles calculation 

evaluation using HF/STO-3G for the glutamic acid, for 

instance, may take up to half-hour on a 2-Quad-core Lenovo 

machine. Moreover, molecular systems involve many rules and 

constraints that must be satisfied during the search process. 

To identify isomers, optimization methods proposed in the last 

decade can be classified as conventional or stochastic 

approaches [9]. Generally, conventional approaches are 

established to have the benefit of fast convergence to high 

quality or precise solutions. However, useful a priori 

knowledge on the regions where glutamic acid isomers may lie 

within the vast landscape is mandatory for the approaches in 

this category to fare well. On the contrary, the stochastic 

approaches can identify the good regions of interest where 

isomers may lie reliably, but convergence to high quality or 

precise solutions are typically slow and inefficient.  

Conventional approaches make use of domain knowledge on 

the initial guess where the isomers may lie. Due to the use of 

domain specific a priori information, conventional methods are 

well established to converge efficiently to a precise glutamic 

acid isomer. Pertaining to stochastic search approaches, 

population based schemes are typically considered. 

Nevertheless, in contrast to conventional approaches, 

significantly fewer stochastic population based approaches 

have been explored for locating isomers of molecular systems 

generally and of Glutamic acid, specifically, making it a fertile 

area for further research investigations to date. In light of this, 

this study explores for the first time, the use of memetic 

optimization method that attempts to fill this gap in order to 

identify glutamic acid isomers. A novel valley adaptive 

clearing molecular memetic algorithm (MOL-MA) is thus 

proposed.  

The efficacy of MOL-MA against other recent algorithms 

proposed in the literature on first-principles calculations of 

glutamic acid has been investigated. In particular, the search 

performances of MOL-MA and other counterpart algorithms 

considered for glutamic acid isomers discovery have been 

studied in terms of computational effort and number of 

uncovered glutamic acid isomers.  Experimental results have 

shown that the proposed algorithm has attained the largest set 

of glutamic acid isomers with minimal computation cost. This 

study has led to the discovery of unprecedented database of 

523 glutamic acid isomers.  

The report is organized in the following manner: Section II 

provides a brief mathematical definition of the glutamic acid 

isomers problem. The algorithmic details of the suggest MOL-

MA are, then, presented in Section III, while Section IV 

present experimental results and Section V presents the 

uncovered set of glutamic acid isomers. A brief conclusion and 

future work is finally presented in Section VI.  

II. PROBLEM STATEMENT 

The fitness or energy landscape has proven to be a useful 

conceptual framework in various fields, from biological 

evolution and protein folding to combinatorial and molecular 

optimization [10-12]. A landscape can be formally defined as 

an ordered set of three components 𝐋 = (𝐗; 𝑓; 𝜑), where X is 

the set of possible solutions or structural configurations, 𝑓(x) is 

the fitness function, and 𝜑 denotes the distance measure 

between two structural configurations in 𝐗. 

Mathematically, isomers can be defined as a stationary point 

(𝐱 ) on landscape 𝐋, where the gradient vanishes and the 

Hessian matrix [13] is a positive definite, and can be expressed 

as: 

𝐗 = {𝐱  (‖
  (𝐱 )

 𝐱 
‖ =  ) }        (1) 

where 𝐱 ∈ R , 𝑑 is the dimensional size, 𝑓(𝐱 )  ∈ 𝐑, 𝐗  is 

the set of glutamic acid isomers. Hessian matrix H  is positive 

definite. 

More often, scientists are generally interested on glutamic 

acid isomers that are deemed as ―good‖. To formalize the 

concept of ―good‖ isomers, we define the ideal sample set X  

having the following properties: 

 contains all structures with energies below a user-

defined threshold, i.e. ( 𝑓(𝐱 ) <  𝑓   ). 

 contains no duplicates, i.e., there do not exist any 

(𝐱 , 𝐱 ) ∈  𝐗  s.t. ‖𝑓(𝐱 ) −  𝑓(𝐱 )‖< ʝ) and ( 𝜑(𝐱 , 𝐱 ) < 

𝜗) 

 has a precision of ‖
  (𝐱 )

 𝐱 
‖ < δ . 

where ʝ and 𝜗 are the maximum acceptable similarities in the 

energy and configuration spaces, respectively, 𝛿 defines the 

precision of the gradient norm and 𝜑(𝐱 , 𝐱 ) denotes a structure 

similarity metric. In the present study, the Ultrafast Shape 

Recognition (USR) is considered. It follows naturally that the 

binding energies of structures in the ideal sample are bounded 

by f    and ʝ. A good sample set (𝐗 ) should thus be the one 

that approximates the ideal set 𝐗  sufficiently well. Hence, one 

can test for closeness to 𝐗  by measuring the cardinality of 

𝐗 ∩ 𝐗 . 

III. THE PROPOSED METHODOLOGY 

Memetic computation represents an emerging field that has 

attracted increasing research attention in the recent few 

decades, with a growing number of success reported [14]. 

Memetic computation [15] in its earliest form was introduced 

as a memetic algorithm (MA), which is a marriage between 



population-based global search and life-time learning, where 

the latter is often referred to as a meme, capable of individual 

refinement in converging to the precise local optima rapidly. 

They are inspired by Darwin’s theory of natural evolution and 

Dawkins’ notion of a meme. MA has manifested as a form of 

hybrid global-local approach that facilitates both exploration 

and exploitation in the search. Up to date, many MAs have 

been crafted for solving real-world problems more efficiently. 

Such hybrid algorithms have been applied successfully to solve 

various medical, scientific and engineering design problems 

[16], [17], where higher quality solutions are attained more 

efficiently than traditional evolutionary algorithms [18-20]. 

In this study, we propose a molecular-based memetic 

algorithm (MOL-MA), designed for the discovery of multiple 

low-lying glutamic acid isomers. In MOL-MA, a population of 

potential glutamic acid isomers is first randomly generated 

using a specialized molecular initialization procedure. The 

potential glutamic acid isomers are then assessed as candidate 

solutions for the problem at hand using a newly designed 

fitness function. Glutamic acid structures in the population 

survive to the next generation according to the stochastic 

universal sampling procedure (Section III.A). The surviving 

structures then undergo the specially designed molecular-based 

evolutionary operators of crossover and mutation (Section 

III.B). To facilitate diversity in the search, evolved glutamic 

acid isomers then undergo the valley-adaptive clearing scheme 

(Section III.C) where population individuals belonging to the 

same valley are segregated from others into niche or valley 

groups. The elite individual per valley group is then refined 

using the Berny algorithm and Lamarckian inheritance [21] 

(Section III.D). Valley elites that satisfy as glutamic acid 

isomers are archived and all other members of the valley 

groups are relocated randomly to other regions of the energy 

landscape to facilitate search exploration towards the discovery 

of other potential high quality glutamic acid isomers that may 

exist. In the search process, any newly uncovered glutamic acid 

isomers are archived and checked against possible duplicates 

(Section III.E). This process repeats for a maximum number of 

generations or until the convergence criteria are satisfied. 

A. Molecular Initialization Procedure  
Considering domain knowledge pertaining to glutamic acid 

molecule, a set of n initial glutamic acid structures is generated 

to form the initial population. Particularly, a basic glutamic 

acid molecule, available at [22] and depicted in Fig. 3, is used 

as a seed to produce the initial population. However, dealing 

with glutamic acid as set of atoms, ignoring the bonds and 

structure constraints, is neither conceivable nor rational. In 

order to grasp structure of glutamic acid seed structure and 

facilitate further structure processing, a tree representation is 

adopted as an acyclic graph representation of glutamic acid 

structure. Each node in the tree is a data-structure representing 

a specific atom with information about the location of the atom 

as well as the type and order of the bond that synergize it with 

its parent. An example for the node considered in this study 

presented in Fig. 2: 
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Fig. 1: The Proposed Molecular Memetic Algorithm (MOL-MA) 

 

Atom ID: Atoms identifier in the molecule 

Coords: Cartesian Coordinate of the atom 

Pbonds: The Type and order of the bond (SC, DC) 1 with the 

parent 

Fig. 2: Basic Tree Node 

An example tree representation of glutamic acid seed 

structure is shown in Fig. 3, using C3 as a pivot atom or root 

node. Once the tree representation of the glutamic acid seed 

is available, a random set of mutations (See Section 3.2) is 

then employed on the seed structure. The randomly mutated 

variants of the glutamic acid seed structure, with structure 

similarity higher than 5%, are then considered for the initial 

population.  

B.  Molecular-Based Evolutionary Operators 

The novel molecular reproduction operators, proposed in this 

study, are briefly described in what follows. 

Molecular Crossover: Crossover operates by interchanging 

genetic information between individuals or chromosomes. The 

crossover process, considered in this study, between two 

glutamic structures is depicted in Fig. 5. The aim is to 

exchange some of the molecular substructures between 

glutamic acid isomers, thus allowing successful substructures 

to replicate across populations and generations. For that 

purpose, glutamic acid isomers in the population are first 

selected and then aligned. Both chromosomes are randomly. A 

random atom is then chosen and identified in the 

chromosomes. Its details as well as the subtree structure are 

thus exchanged between the parent structures.  

 
1 Sc: refers to a single covalent bond, while DC refers to a double covalent 

bond 
 



Molecular and Atomic Mutations: Analogous to biological 

mutation, the mutation operators in EAs bring in subtle 

changes to a randomly chosen subset of chromosomes in the 

MA population or glutamic structures in the present context. 

We thus propose the following three molecular and atomic 

mutation strategies for glutamic structures evolution 

ST-1. Sub-Trees/substructure Rotation: a set of parent nodes 

are randomly chosen (  𝐑
). Their structures and sub trees 

are rotated randomly around the axis of the chosen node 

and its parent.  

  ∈   𝐑
  𝐱 ∈  ( ), 𝐱 =  𝐑   𝐱    (2) 

Where  ( ) set of atoms that fall in the subtree precedent to 

 , 𝐱 is a vector containing the selected atom coordinates 

and 𝐑(  ,〈 ( ( ))  ( )〉) is the rotation matrix where 

rotation is performed around 〈 ( ( )) −  ( )〉 axis 

with a random angle 𝜗  . 

ST-2. Leave Nodes/Atoms Rotation: a set of randomly 

chosen leaves/atoms ( 𝐑) are arbitrarily rotated. Each 

leave node is rotated around the bond between the 

grandparent and parent of the node) as follow 

 𝐱 ∈  𝐑 , 𝐱 = 𝐑   𝐱         (3) 

Where 𝐱 is a selected atom and 𝐑(  ,〈 ( (𝐱))  (𝐱)〉) is the 

rotation matrix where rotation is performed around 

〈 ( (𝐱)) −  (𝐱)〉 axis with a random angle 𝜗  .  
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Fig. 3: Glutamic Acid and Its Tree Representation, Taking C3 as A Pivot Atom or Root Node. 

 

ST-3. Nodes/Atoms Translation: a set of randomly 

chosen atoms/nodes (  ) are arbitrarily translated 

such that their bonds with neighbours are 

maintained within length constraints detailed in 

Table I. 

Root Node or pivot atom 

 



 𝐱 ∈    , 𝐱 =    ( (𝐱),𝐱)( (𝐱) − 𝐱)        ( (𝐱) 𝐱) ∈

    ( (𝐱) 𝐱)    ,    ( (𝐱) 𝐱)   
  (4) 

Where x is a selected atom and  (𝐱) is parent atom of x 

and   ( (𝐱), 𝐱) is the bond type as shown in Table 

I,    ( (𝐱),𝐱) is a random number between the 

minimum (   ( (𝐱) 𝐱)    ) and maximum 

(   ( (𝐱)−𝐱)    
) bond lengths. 
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Fig. 4: Molecular Crossover Operator 

 
TABLE I 

 BOND LENGTHS CONSTRAINTS, AS CONSIDERED BY DOMAIN EXPERTS. 

Bond Type 

(  ( −  𝐱)) 

Min length (    (  𝐱)    ) 

A0 

Max length (    (  𝐱)    ) 

A0 

O-H 0.95 1.50 

C-H 0.95 1.15 
N-H 1.06 1.12 

N-C 1.47 2.10 

O-C 1.43 2.15 
C-C 1.20   1.54 

C.  Valley-Adaptive Clearing Scheme 

The valley-adaptive clearing scheme is designed to adapt to 

non-uniform width of valleys in the problem landscape and 

considered here to maintain the diversity of the evolving 

populations. The core idea of the valley-adaptive clearing 

scheme is to cluster the population individuals into groups that 

share common valleys and subsequently clearing the lowest fit 

individuals from each group by relocating them to random 

regions of the solution space. In particular, the valley-adaptive 
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4) Exchange sub-structure 
 

 

3) Find a random 
Atom, Say C5, in Ch1, 

Ch2 
 



clearing scheme is composed of three core phases. The valley 

identification phase categorizes the population of individuals 

into groups of individuals sharing the same valley, denoted as 

Vgroups. Subsequently, the dominant individual (i.e., in terms 

of fitness value) of a valley group or Vid is archived if it 

represents a unique glutamic acid isomer, while all other 

members of the same group undergo the valley replacement 

phase, where relocation of these individuals to new basin of 

attractions or valleys are made so that unique good quality 

glutamic acid isomer elsewhere may be uncovered. In the event 

that glutamic acid isomer exists in a valley group, all 

individuals of the group will undergo the valley clearing phase 

where elite individuals (xelite) are ensured to survive across the 

search generation while all others are relocated to new valleys 

or basin of attractions, of the fitness landscape. 

D.  Life-Time Learning Procedure  

The Berny algorithm is considered here as the life-time 

refinement procedure in MOL-MA due to its ability in 

converging to precise glutamic acid isomers efficiently. 

Considering the valley groups Vgroups identified previously in 

section 4.4, the elite individual (xelite) of each valley group will 

undergo the Berny algorithm to arrive at a precise glutamic 

acid isomer found in the near vicinity of xelite. For each xelite 

vector, the Berny algorithm proceeds based on the energy and 

its derivatives at xelite and iterates, considering using L-BFGS 

updates until a convergence in term of maximum number of 

iterations or precision configured is fulfilled. 

E.  Duplicate Molecular Structure Identification of 

Configurations and Archival Procedure 

In chemistry or physical sciences, both rotated and translated 

molecular configurations of a given configuration are 

considered identical, i.e. they are invariant to translation and 

rotation. In MOL-MA search, only unique representative 

configurations in the population are considered to facilitate 

discovery of multiple high quality glutamic acid isomers. To 

avoid potential wastage of resources due to redundant duplicate 

configurations, a procedure to identify such structures is 

designed based on USR, the Ultrafast Shape Recognition. USR 

measures the similarity between molecular structure shapes 

with a signature vector of twelve atomic distance statistics, U. 

This signature captures the mean, standard deviation and 

asymmetry of the distances from each atom in the structure to 

four anchor points: (a) the structure’s centroids, b) the atom 

closest to a, c) the atom furthest from a and d) the atom furthest 

from c. This signature presents an effective measure, invariant 

to translational and rotational symmetries. The similarity 

 (𝐱 , 𝐱 ) between two molecular structures 𝐱  and 𝐱 , as 

inverses of distances between the signatures, can hence be 

easily defined by the inverse-scaled Manhattan distance as 

follows: 

 (𝐱 , 𝐱 ) =
 

  
 

  
∑ |  

𝐱    

𝐱 
|  

   

      (5) 

where   
𝐱  denotes the     component of 𝐱 ’s USR signature.  

 (  ,   ) maps [0; 1) with 1 indicating maximum similarity. 

 (  ,   ) is also symmetric since  (  ,   ) =  (  ,   ).  

During the evolutionary process, molecular signatures are 

calculated for the glutamic acid structures and two glutamic 

acid structures (  ,   ) with  (  ,   )    are considered as 

identical [6]. In such events, one of the glutamic acid structures 

in the population is replaced with a random configuration.  

During duplicate identification and replacement process, all 

non-duplicated discovered structures are archived using a 

multi-map data structure. Multi-maps are associative data 

structures that store elements indexed by keys to ensure that 

comparisons and duplicate checking are performed efficiently. 

Multi-maps, in particular, allows for quick access and rapid 

retrieval of archival elements based on key values. From the 

computational cost prospective, the worst case access time is 

 (    ) where   is the number of keys and worst case 

insertion time is  (      ) where    is the number of archived 

solutions. In our work, the archive is indexed based on the 

number of significant figures of binding energies as well as 

USR. 

IV. EXPERIMENTAL STUDY 

In this section, we study the efficacy of the proposed molecular 

memetic algorithm (MOL-MA) for locating glutamic acid 

isomers and pit it against several existing state-of-the-art 

optimization methods, including the stochastic multi-start local 

search (SMLS) [23], sequential niching memetic algorithm 

(SNMA) [24], as representatives of recent advances in niching 

algorithms and MAs. All methods work as baselines for 

comparison on realistic glutamic acid isomers optimization, 

using a comprehensive set of performance measures that are 

described in Table II. The energy, gradient and eigenvalues are 

calculated using first-principles approach at the Hartree–Fock 

level, with the STO-3G basis set [25], and all computations are 

executed on the PDCC cluster. The experimental settings and 

numerical results obtained are reported. In particular, the 

algorithmic parameter settings used in the present study are 

listed in Table III. All algorithms are initialized with a 

population size of 10 molecules and iterate until a maximum of 

50 generations exceeded or the algorithm incurs a maximum 

number of 4 x 10
4
 Gaussian calls. For the sake of statistical 

significance, the experimental results summarizing 10 

independent experimental runs are reported. Note that more 

runs are deemed to be impractical due to the intractable 

computational resources that would be required. 

In this section, we present next on the numerical results of 

MOL-MA pitted against other state-of-the-art evolutionary and 

memetic approaches for the discovery of isomers. For the sake 

of brevity, the unique properties of the algorithms considered 

in the present study, i.e., in terms of life time learning, 

specialized molecular evolutionary operators, niching operators 

and domain knowledge required are summarized in Table IV. 

The performance efficacy of the algorithms assessed according 

to their success rate in Table V. According to the table, it is 

observed that only algorithms that consider local search 

operations have attained a non-zero success rate. Among those 

successfully attained a non-zero success rate, algorithms with 

molecular operators has observed to attain not only the highest 



success rate of 100 but also the largest set of isomers 

uncovered, see Table VI. In particular, canonical SNMA 

method for example has attained a significant number of 

isomers. However, a better result has been attained for SNMA* 

which consider the molecular operators, where number of 

isomers arrives at 38 isomers, with improvement rate of 680% 

over canonical SNMA. Among all, MOL-MA has been 

observed to attain the largest number of isomers, with 

significant improvement over other algorithms ranging from 

170-1600% improvement rate. 
 

 

TABLE II 

DESCRIPTIONS OF THE PERFORMANCE MEASURES CONSIDERED 

Performance Measure Description 

Success Rate The ratio of the successful runs to the total number of runs (10), where a run is called successful if the 

algorithm attains at least an isomer.  

Number of Uncovered Glutamic Acid Isomers Number of uncovered glutamic acid isomers (#IS) is used here to measure the efficacy of the 
algorithms. 

Gaussian Calls Number of Gaussian calls that the algorithm incurred during the execution 

 
TABLE III 

 ALGORITHMIC PARAMETERS SETTINGS 

Parameter Value 

𝜗 0.05 

ʝ 0.0001 

𝛿 3.5 x 10-4 

𝑓    -100 

Pmutation 0.5 
Pcrossover 0.5 

rnicheRadius 10 A0 

 

TABLE IV 
 PROPERTIES OF THE ALGORITHMS CONSIDERED (Y DENOTES THE EXISTENCE OF A PROPERTY WHILE N REFERS TO ITS ABSENCE) 

Properties SMLS CGA SNMA SNMA* MOL-MA 

Life-time learning Y Y Y Y Y 

Molecular Operators N N N Y Y 

Niching Operator N N Y Y Y 

Domain Knowledge Required Initial guesses N N N N 

 
TABLE V 

SUCCESS RATE OF ALGORITHMS 

Method MOL-MA SNMA* SNMA SMLS CGA 

Success rate 100 100 60 45 0 

 

TABLE VI 

NUMBER OF UNCOVERED ISOMERS BY DIFFERENT ALGORITHMS 

Method MOL-MA SNMA* SNMA SMLS CGA 

Number of Uncovered Isomers 47 38.5 5.3 2.9 0 

Improvement rate 100% 120% 878% 1603% NA 

 

 

The computational requirements of the algorithms 

considered in the present study are also summarized in Table 

VII. From the results, SNMA, CGA, and SMLS are observed 

to incur the most computational effort, exhausting the entire 

computational budget allowable. In spite of the largest 

percentage of precise isomers uncovered as discussed 

previously, MOL-MA remains to display superiority in terms 

of computational efficiency over the other state-of-the-art 

algorithms. In particular, the cost reductions of MOL-MA over 

the other counterpart algorithms are summarized in Table VII, 

indicating that MOL-MA maintains an average cost reduction 

of 345% over SNMA* and 490% over other algorithms. 
 

TABLE VII 

 NUMBER OF GAUSSIAN CALLS INCURRED BY DIFFERENT ALGORITHMS 

Method MOL-MA SNMA* SMLS CGA 

Number of Gaussian Calls 6,771 30,185 40,000 40,000 
Cost Reduction in percentage 100% 345% 490% 490% 

 

 



V.  STUDY ON THE UNCOVERED SET OF GLUTAMIC ISOMERS 

AND LANDSCAPE CORRELATION ANALYSIS 
Since the proposed algorithm attained the largest set of 

glutamic acid isomers, the bond-aware molecular memetic 

algorithm has been allowed to run for longer with a 50-

individual population and 10,000 generations with a maximum 

of a million gradient evaluations. A database of 523 isomers 

has been uncovered. The 10 glutamic isomers uncovered 

whose energies are the lowest have been reported in Table 

VIII. Among them, the folded and extended forms have been 

observed, while the first form has been observed to be with the 

minimal energy. Such a form is reported in literature to activate 

the receptor. Despite its importance for receptor activations and 

neuronal communications, the abundance of this form may 

cause a fatal molecular cascade in neuronal cells, leading to the 

neurotoxicity. Nonetheless, the energy difference between the 

folded and extended forms does not appear to be very high as 

indicated in Table VIII. In particular, the energy difference is 

below 1.5 KJ/MOL. This may suggest that the transformation 

from a folded to extended isomers can be manipulated quite 

easily. Uncovering such a transformation pathway may provide 

new therapeutic tools for neurotoxicity. However, the full 

details of such a transformation pathway would require 

knowledge on glutamic acid transition states lying between the 

extended and folded isomers. 

The density distribution of the uncovered set of glutamic acid 

isomers in terms of relative energy and structure dissimilarity 

of glutamic acid isomers have been depicted in Fig. 5. It is 

clear from the Fig. that glutamic acid isomers are denser in the 

region between 25% and 45% USR structure dissimilarity and 

from 3 to 17 KJ/MOL as well as from 27 to 38 KJ/MOL. 

Moreover, more than 90% of the isomers uncovered were 

below 45 (KJ/MOL) and 45% USR Dissimilarity, indicating 

the most rugged regions. 

In order to measure the difficulty of the glutamic acid isomers 

problem, we further study the landscape correlation of the 

glutamic acid isomers problem through the mean of fitness-

distance correlation [26]. Fitness-Distance Correlation (FDC) 

(Eqn. 15) is the Pearson product moment correlation between 

the energy differences and the structural differences of the 

samples to the lowest energy isomer, shown below.  

 

FDC = 
   (  ;  )

 (  ) (  )
       (15) 

 

where    (  ;   ) is the covariance function, (  )and (  ) 

are the energy difference and USR dissimilarity between each 

solution and the lowest energy solution respectively. Likewise, 

 (  ) and  (  ) represent the standard deviations of the 

energy differences and the structural dissimilarity. 

According to FDC, a landscape can be categorized into well-

ordered, rough or deceptive landscape. In particular, high 

correlation ( FDC >60 ) indicates that isomers are well-ordered 

and optimization methods can locate them quite easily, while 

small correlation indicates a rough landscape where an 

optimization algorithm may be mislead to sub-optimal region, 

and negative correlation indicates a deceptive landscape where 

the global minimum is located among high energy solutions. 

The landscape analysis on the uncovered set of glutamic acid 

isomers has revealed that the problem has a rough landscape 

with FDC of 4.6   60. 

VI. CONCLUSION  

Due to the importance of glutamic acid isomers in both 

neuroscience and structural bioinformatics, this study will be 

utterly dedicated to the discovery of glutamic aci isomers. A 

mathematical formulation and description of this non-linear 

programming problem has been defined. A novel valley 

adaptive clearing molecular memetic algorithm (MOL-MA) 

that requires no a priori knowledge for the discovery of the 

glutamic acid isomers has been proposed. The proposed 

molecular memetic algorithm is composed of several core 

components, namely a specialized molecular structure 

initialization, an advance fitness function, molecular-based 

evolutionary operators, valley adaptive clearing scheme and the 

Berny-based life time learning procedure. Assessments made 

against several state-of-the-art approaches in the field, in terms 

of number of uncovered isomers and computational cost 

incurred, is conducted to demonstrate the efficacy of MOL-

MA. 

MOL-MA has been employed on glutamic acid isomers 

using high fidelity computational models based on first-

principles calculations. The results of the MOL-MA application 

on glutamic acid have led not only to a discovery of previously 

known isomers, but also to locate newly established ones. The 

insights gained through isomers uncovered could provide better 

understanding of the thermodynamics properties and the 

isomerization processes in glutamic acid and also provided an 

organized manner for further studies to be held on glutamic 

acid isomers.  

The success on glutamic acid encourages the efforts to 

further investigate the applicability of MOL-MA for other 

molecular systems such as drug molecules, other amino acids, 

other neurotransmitters, neuroreceptors and neurotransporters 

as well as protein folding. Although MOL-MA will be applied 

to glutamic acid in this study, it can be easily adapted for 

subsequent studies in computational chemistry and biology. 

Moreover, the analyses that will be conducted in this study can 

be replicated for other molecular systems to uncover landscape 

properties and provide insights into both physical chemists and 

evolutionary algorithmists. 

The interaction of glutamic acid isomers that will be 

discovered with neurotransporters and neuroreceptors will be 

also a subject for further investigation. Such study on the 

interaction among glutamatergic system components is 

expected to reveal the cover over the magnificent complex 

neurosystems activities such as cognition, learning and 

memory. It may also explain the declination of learning with 

aging. It will also shed the light on the glutamic acid 

configurations that plays either positive or negative role in both 

physiological and pathological conditions. 
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TABLE VIII 

THE 10 LOWEST ENERGY GLUTAMIC ACID ISOMERS 

 

ID Isomers 

Energy 
(Hartree) 

Relative 

Energy 
(KJ/MOL) 

ID Isomers 

Energy 
(Hartree) 

Relative 

Energy 
(KJ/MOL) 

IS-1 
(Folded) 

 

-541.3665 
(0) 

IS-6 

(Extended

) 

 

-541.3659 
(1.575299772) 

IS-2 

(Folded) 

 

-541.3663 

(0.52509) 

IS-7 

(Folded) 

 

-541.3659 

(1.575299772) 

IS-3 

(Folded) 

 

-541.3663 

(0.52509) 

IS-8 

(Folded) 

 

-541.3657 

(2.100399696) 

IS-4 
(Extended) 

 

-541.366 
(1.31274981) 

IS-9 
(Folded) 

 

-541.3655 
(2.62549962) 

IS-5 

(Folded) 

 

-541.3659 

(1.575299772) 

IS-10 

(Extended
) 

 

-541.3654 

(2.888049582) 

 



 
 Fig 5: Scatter Plot With Marginal Histograms of USR Structure Dissimilarity Versus Relative Energy for the Glutamic Acid Isomers Uncovered. 
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