

Abstract—Incremental learning is a learning model for learn-

ing new information from new data. In incremental learning, the

data sets are available chunk by chunk. The learning model

should be able to learn new information from new data sets with-

out accessing previously learned data sets and preserve previous-

ly learned information. In this report, class imbalance in incre-

mental learning is considered and a new framework, Selective

Further Learning (SFL), is proposed. SFL is an ensemble based

method. In SFL, when a new data set becomes available, part of

the current ensemble is selected to Further Learn the new data set.

Some experiments on synthetic data sets are implemented and

the results and analyses show that SFL is able to outperform a

recently proposed method.

Index Terms—Incremental Learning, Class Imbalance, Selec-

tive Further Learning

I. PROBLEM DESCRIPTION

Normal machine learning problems require learning model

to learning information from all the achieved data and all the

data are stored. In practice, the data are usually updated all the

time and new information is necessary to be learned from the

new data. However, it is time consuming to learn new infor-

mation with accessing to the previous data and sometimes

storing the learned data is expensive. In this situation, the

learning model is required to have the ability of learning new

information from new data and at the same time preserving the

previously learned information without accessing the previous

data. This learning model is called incremental learning.

In incremental learning, the whole data set is not available

in a lump. In another word, we can only get a part of the data

set every time. We suppose that the whole data set is divided

into subsets, i.e., . The rules of and are de-

noted as and respectively.

In incremental learning, the aim of the learning model is to

learn by learning from respectively. The mainly diffi-

culty is that the previous learned rules may be forgotten when

the model learns new rules from new data subsets, especially

when the rules of different data subsets are different. This

phenomenon was called catastrophic forgetting. If
 , the learning model can learn form and will

not be forgotten when new data subsets are learned. In this

The author and his supervisors are with the Nature Inspired Computation

and Applications Laboratory, the Department of Computer Science and Tech-

nology, University of Science and Technology of China, Hefei, Anhui 230027,

China. Xin Yao is also with CERCIA, the School of Computer Science, Uni-

versity of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Emails:

Minlong Lin: sunnyboy@mail.ustc.edu.cn; Xin Yao: x.yao@cs.bham.ac.uk;

Ke Tang: ketang@ustc.edu.cn.

case, incremental learning is not real challenging. However, in

practical, are usually different between different data sub-

sets, so the catastrophic forgetting may happen.

In our assumption, even though the rules are different be-

tween different data subsets, they are not inconsistent with ,

i.e., the target concept is not changed. This phenomenon is

also called virtual concept drift and it is different from real

concept drift, in which the target concept is changed when

new data subsets are available. In this research, it is assumed

that no real concept drift will happen. Virtual concept drift

was called sampling shift in [1] and it will be referred to in

this work. When only sampling shift happens, if the rules can

be characterized by a mean and covariance matrix, both of

which are additive, then we can still get the rules of the whole

data set easily. Unfortunately, most nonparametric approaches,

such as Neural Networks, are not additive, and this comes into

the challenge.

There is another issue in incremental learning, i.e., class

imbalance. In normal learning model, class imbalance problem

has been studied by many researchers and there are plenty of

literatures addressing class imbalance problems [2], [3], [4].

Class imbalance problems can also occur in incremental learn-

ing. Class imbalance may occur in mainly two cases:

1) If the class distribution of the whole data set is im-

balanced, the class distribution of data subset will

also be imbalanced. Furthermore, it will be common

that samples of the minority classes may be missing in

some data subsets. Sampling shift will occur in this

case and the learning model will also suffer from cata-

strophic forgetting.

2) Even though the class distribution of is balanced,

may also be class imbalanced. In typical case, all of the

partial sets are class imbalanced but the combined

data set is class balanced. Sampling shift will also

occur in this case.

In this research, we focused on class imbalance cases, in

which sampling shift also occurred. Specifically, when sam-

pling shift occurs, new classes may come up in the new data

subset and some previous classes may loss in the new data

subset. When class distribution of the whole data set is imbal-

anced, this phenomenon will be more likely to happen to the

minority classes. This is also the main issue in this research.

The rest of this report is organized as follows. In Section II,

we will briefly review some existed methods for incremental

learning. In Section III, our method will be described. The

experimental study will be presented in Section IV. Finally,

we will conclude this research and discuss the future work in

Section V.

Selective Further Learning for Class Imbalanced

Incremental Learning
Minlong Lin

Supervisor: Xin Yao and Ke Tang
 

II. RELATED WORK

Some incremental learning methods have been proposed.

The Adaptive Resonance Theory modules map (ARTMAP)

[5] was a kind of neural network architecture which can self-

organize clusters in response to new data which are sufficient-

ly different from previous ones. ARTMAP is capable of in-

cremental learning and was frequently used in incremental

learning [6], [7], [8]. ARTMAP can perform well in incremen-

tal learning. However, it is very sensitive to the vigilance pa-

rameter and it will cause over fitting if the vigilance parameter

is not chosen properly.

Kasabov proposed a one-pass incremental learning algo-

rithm, namely evolving fuzzy neural network (EFuNN) [9].

EFuNN can create new neurons for new input examples that

are sufficiently different from previous ones. EFuNN can learn

fast and adapt incrementally in an on-line mode. However,

many parameters have to be set and the parameters have high

influence in the training of EFuNN [10].

Both ARTMAP and EFuNN are methods for training single

model. They learn new rules by changing the architecture of

the models such as adding new neurons. Recently, some en-

semble-based methods were proposed for incremental learning.

Learn++ [11] [12] is an ensemble method which was based

on AdaBoost [13]. There are also some improved versions for

Learn++, such as Learn++.MT [14], Learn++.MT2 [15],

Learn++.NC [16] and Learn++.UDNC [17]. Learn++.MT and

Learn++.NC was proposed for handling the problem of “out-

voting” when learning new classes. Learn++.MT2 was pro-

posed for handling the imbalance between partial data sets.

Class imbalance in incremental learning was addressed in [17]

and [18], where Learn++.UDNC and Learn++.SMOTE was

proposed respectively. Learn++.UDNC was proposed for in-

crementally learning new information from class-imbalanced

data sets. In its assumption, no real concept drift will happen,

which is also the assumption in this research. However,

Learn++.SMOTE was proposed for incrementally learning

new information from class-imbalanced data sets in a non-

stationary environments, i.e., real concept drift will happen.

In [19], Seipone and Bullinaria employed evolutionary neu-

ral networks to solve incremental learning. The evolutionary

algorithm was used to evolve the training parameters for the

neural networks, i.e., the number of hidden units, the learning

rate, initial weight distributions, and so on. At the training

process, each neural network is trained with one partial data

set. However, the evolving process for optimizing the parame-

ters considers the whole data set. Therefore, this approach is

not strictly adapted to incremental learning.

Self-Organizing Neural Grove (SONG) [20] is also an en-

semble method which uses Self-Generating Neural Networks

(SGNNs) [21] as the individual learners. SGNN is based on

Self-Organizing Map (SOM) and implemented as a self-

generating neural tree (SGNT). A pruning method is intro-

duced to prune the units of SGNT to reduce the computation

time and the memory capacity. SONG has also been shown to

be effective for incremental learning. Although the number of

SGNTs is fixed, the number of total units of SGNTs grows as

more data sets are incrementally learned. In [20], SONG was

just employed to test its ability of incremental learning. In-

cremental learning was not the main issue and not deeply in-

vestigated.

Recently, methods based on Negative Correlation Learning

(NCL) [22] have also been proposed for incremental learning

[23], [24]. NCL is a method to construct neural networks en-

semble. It is capable of improve the generalization perfor-

mance of the ensemble by decreasing the error of every neural

network and increasing the diversities between neural net-

works simultaneously. In [23], Fixed size NCL and Growing

NCL was proposed. In Fixed size NCL, the size of the ensem-

ble is fixed and all of the neural networks are trained when

new data subsets become available. In Growing NCL, the size

of the ensemble grows as the data sets are incrementally

learned and only new added neural networks are trained when

new data subsets become available. In [24], selective NCL

was proposed. In selective NCL, new neural networks are

added and trained when new data subsets become available

and then a pruning method was employed to prune the ensem-

ble to make the size of the ensemble fixed.

Although the existed methods have presented good perfor-

mance on incremental learning, most of them did not consider

the class imbalance in incremental learning. In this research,

class imbalance in incremental learning will be considered as

the main issue. According to the discussion before,

Learn++.UDNC considered the same issue of this research.

Therefore, we will mainly compare our method with

Learn++.UDNC.

III. OUR METHOD

A. The Framework

In our previous work, i.e., Selective Negative Correlation

Learning (SNCL) [24], selective ensemble was used. When

new data subset became available, the previous ensemble was

cloned and the new data subset was used to train the cloned

ensemble. The two ensembles were combined to form an en-

semble and half of the individuals in the ensemble were

pruned to keep the size of the ensemble fixed. This method

has the following two drawbacks. One is the training process.

The new data subset is used to train the cloned ensemble.

However, the cloned ensemble has been converged when

training with the previous data set. It might be difficult for the

cloned ensemble to learn new information from new data sub-

set. The converging process might be slow. The other is the

pruning process. When pruning the combined ensemble, the

current data subset is used. If the rules of the current data sub-

set are quite different from that of the previous data subset, i.e.,

sampling shift occurs, the pruning process will prune all of the

individuals of the previous ensemble. This will cause cata-

strophic forgetting.

To overcome these drawbacks, we propose a new frame-

work for incremental learning, i.e., Selective Further Learning

(SFL). The following presents the process of the framework

(when new data subset becomes available), where the number

of the individuals in the previously trained ensemble will be

denoted as .

step 1. Fetch ⌊ ⌋ individuals from the current ensem-

ble and combine them as an ensemble , i.e.,

the current ensemble is divided into two ensemble:

 and ;

step 2. Replace one individual of by a new initial-

ized one;

step 3. Train with the new data subset;

step 4. Combine and :

 ;

In this framework, no pruning process will be executed so

that the risk of catastrophic forgetting is reduced. On the other

hand, the replacing process in step 2 will make the ensemble

easier to learn new information.

B. The Structure of the Ensemble

We used Multi-Layer Perceptrons (MLP) to construct the

ensemble. For a data set with classes, the number of output

nodes of each MLP was set as . For a testing example, the

output of th output node indicates the possibility that the ex-

ample belongs to class . In incremental learning mode, the

data sets are available chunk by chunk. Different chunks

might contain different classes. At testing stage, when an ex-

ample of class is used for testing, the outputs of the MLPs

which have not trained by any example of class may mislead

the outputs of the ensemble. In this situation, some modifica-

tions were made to the structure of MLP.

An extra weight was added to every output node in every

MLP. The weight was initialized as 0 at the initial stage and

updated during learning every new data subset. We suppose

the number of examples of class in the new data subset is .

After training , the extra weight of the th output node

was updated by . The accumulation was executed for all the

output nodes of the MLPs in . At the testing stage, the

output of the ensemble was calculated by the weighted aver-

age of MLPs:

 ∑

 ∑

 ⁄ , (1)

where is the extra weight of the th output node of the th

MLP, is the output of the th output node of the th MLP

and is the th output of the ensemble. Equation (1) was used

only at the testing stage. At the training stage, the output of the

ensemble was calculated by the arithmetical average of MLPs.

On the other hand, when new classes appear in the new data

subset, new output nodes were added to all of the MLPs in the

current ensemble. The connection weights to the hidden nodes

were set by initialization method and the extra weights were

initialized as 0.

C. Fetching process

The fetching process in step 1 of the framework will base

on the current data subset . The individuals will be added to

 one by one. Every time, the individual which makes

 perform the worst on the current data subset will be

added to . At the same time, the following constraint

must be satisfied. If the current data subset do not contain

some classes that have appeared in the previous data subset,

the fetching process should ensure that at least one MLP that

has been trained with the data of those classes should not be

added to . To formulate this constraint, after dividing

the current ensemble into and , the following

constraint should be satisfied in :

 ∏ (∑) . (2)

where class is not contained in . If there is no MLP

that can be added to , a new initialized MLP will be

generated and added to .

D. Training process

We have proposed a Dynamic Sampling (DyS) method for

class imbalance problems [25], which can be used as the train-

ing method in step 3 of the framework. The main process of

DyS for an ensemble is presented as follows (in one epoch):

step 1. Randomly fetch an example from the training

set;

step 2. Estimate the probability that the example should

be used for updating the ensemble.

step 3. Generate a uniform random real number be-

tween 0 and 1.

step 4. If , then use to update the ensemble using

Negative Correlation Learning (NCL) [22].

step 5. Repeat steps 1 to 3 until there is no example in the

training set.

The above steps will be repeated until stop criterion is satis-

fied. The following shows the method for estimating , which

was the main issue in DyS.

For an example belonging to class , the real output of the

example is denoted as . The margin can

be defined as

 . (3)

 indicates the confidence of the MLP to classify the example

as class and indicates that the example is misclassified

by the current MLP. The probability that the example should

be used to update the MLP should be negatively correlated to

 .

In addition to the margin, the imbalance should be consid-

ered. The example belonging to a minority class should have a

higher probability to be used to update the MLP than that of a

majority class. The ratio of class is defined as ,

where is the number of examples belonging to class and

is the number of all the examples. The probability that the

example will be used to update the MLP should be negatively

correlated to .
In class imbalance learning, the margin that the MLP dis-

tinguishes an example belonging to class from other classes

is defined as

 , (4)

where is a normalization factor and we set so

that the margin for the class with the lowest number of exam-

ples is equal to (3).

 indicates that the example is misclassified and the

example need to be learned. So if . Otherwise,

 , and the probability should be

negatively correlated to , so the probability can be estimated

as . Therefore, the probability that an example

belonging to class will be used to update the MLP can be

heuristically estimated as

 {

 ()
 (5)

In this selection mechanism:

i. The examples that are misclassified will be selected to

update the MLP.

ii. For the examples that are correctly classified, the ex-

amples of minority classes are emphasized more than

those of majority classes.

iii. If the examples are correctly classified, those which are

classified more ambiguous (i.e., the value of in (3) is

smaller) are emphasized more.

The selection mechanism can allay the affection of class

imbalance. However, if the selection mechanism is used over

the training set directly, due to the class imbalance of the

training set, more examples of the majority classes will be

tested whether be used to update the MLP or not according to

(5). Especially, at the beginning of the training process, the

initial MLP will misclassify about 50% of the examples for all

the classes. According to the first condition of (5), the mis-

classified examples will be used for training. Therefore, the

selected examples will still be imbalanced and the MLP may

easily be biased towards the majority classes.

To avoid the bias, an oversampling process will be imple-

mented at the beginning of every epoch. At the beginning of

the first epoch, the examples of all classes except for the larg-

est class will be duplicated to make the data set balanced, i.e.,

the number of every class is equal to that of the largest class.

As the training process goes on, the duplicate ratio will be

attenuated. Denote the duplicate ratio for class at the first

epoch as , the duplicate ratio for class will be heuristically

attenuated to at the end of the th epoch, where

 .

IV. EXPERIMENTAL STUDY

A. Experimental Setup

For comparing with Learn++.UDNC, the synthetic data set

which was used in [17] will be used in the experimental study.

In [17], the data set was generated by 2D Gaussian distribution

with predefined means and covariance matrices for the four

classes. The means were (), (), ()

and (). The features were assumed to be uncorre-

lated and the variances were and . TA-

BLE I shows the data distributions for two types of data sets. It

can be observed that the training sets are class imbalanced and

there are new classes in new data subsets. Especially, in Type

B, class 3 appeared in and then disappeared in .

One MLP (i.e.,) was used at the beginning, i.e.,

when the first data subset became available. The number of

hidden nodes in every MLP was set to 20 and the activation

functions of hidden nodes and output nodes were both sigmoid

functions. The training error goal was 0.05 and the number of

maximal epochs was 100. The data generation was repeated

30 times and in every time, the training process was executed

one time. The results were the average on the 30 executions.

B. Experimental Results

The recall of every class was used as the metric. After train-

ing with every data subset, the recalls of the classes on testing

data set were estimated. TABLE II presents the results compar-

ing with Learn++.UDNC, the results of which were directly

obtained from [17]. In TABLE II, AVG denotes the arithmetical

average of the recalls of all the classes, denotes the im-

provement from the first time the class appears to the last data

subset. For example, class 2 was first appeared in , so the

improvement was the recall value after the training of mi-

nus the recall value after the training of . In the AVG col-

umn, the improvement was the last AVG value minus the first

AVG value.

It can be observed from TABLE II that, SFL can make more

improvement than Learn++.UDNC. SFL is capable of han-

dling class imbalance. After the training of , the recalls of

class 1, which is a minority class, are higher than that of

Learn++.UDNC in both Type A and Type B. SFL can also

deal with new classes that come up in the new data subset

(class 2 in and class 3 in). In Type B, class 3 disappears

in . However, after training with , the recall of class 3 was

not reduced. Therefore, when previous classes disappear in the

new data subset, SFL can also preserve the learned infor-

mation. Although SFL did not perform better than

Learn++.UDNC when comparing by the value of average re-

call in Type A, SFL used much less MLPs. After training with

 , 2 MLPs were used in SFL while 60 MLPs were used in

Learn++.UDNC.

C. Further Analyses

To see the performance of SFL with more MLPs in the en-

semble, another experiment with was executed. The

results are presented in TABLE III. It can be observed from TA-

BLE III that when increase, the performance of SFL become

worse. Especially, new classes were not well learned after

their first came up. To find out the reason of this phenomenon,

some more detailed results were analyzed. After the training

with every subset, the recalls of all the classes of every single

MLP on both training set and testing set were recorded. The

following presents some analysis.

 According to comparing of the results on training set

and testing set, we concluded that over fitting did not occur.

 After training with , in which class 3 came up, the

MLPs in can get a good recall on class 3. However,

when and was combined, the recall value of

class 3 degrade significantly. This is because class 3 has

not been learned by so that will misclassify

class 3 to other classes. When and was com-

bined, may mislead the classification of an example

of class 3.

TABLE I TWO TYPES OF DATA DISTRIBUTIONS OF THE SYNTHETIC DATA SETS,
WHERE 𝐶𝑖 DENOTES CLASS 𝑖, 𝑆𝑖 DENOTES THE 𝑖TH DATA SUBSET.

Type A Type B

𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶

𝑆 10 0 0 500 10 0 0 500

𝑆 10 500 0 500 10 500 0 500

𝑆 10 500 500 500 10 500 500 500

𝑆 10 500 10 500 10 500 0 500

Test 200 200 200 200 200 200 200 200

 Besides, if the MLPs of did not perform well at

the overall level (e.g., the recalls are high on most of the

classes but 0 on one class), they may also mislead the clas-

sification. Therefore, when updating the extra weights for

every MLP, the overall performance on all classes should

be considered.

According to the above analysis, some modifications were

made to SFL. The modifications were mainly on step 3 of the

framework in Section III.A, including the updating of the extra

weights in Section III.B and the training process in Section

III.D.

1) After training with new data subset, the extra

weight of the th output node in the th MLP was up-

dated by , where is the number of examples of

class and is the geometric mean of all the recalls

of the th MLP on current data subset. At the same

time, the training process should ensure that not all the

 values are 0.

2) If there are new classes in the new data subset, the ex-

tra weights in was also updated. Denote as

the extra weight of the th output node in the th MLP

TABLE III THE RECALLS (%) OF EVERY CLASS ON TESTING SET OF SFL WITH 𝑀 , WHERE AVG DE-

NOTES THE ARITHMETICAL AVERAGE OF THE RECALLS OF ALL THE CLASSES, 𝐼𝑚 DENOTES THE IMPROVEMENT

FROM THE FIRST TIME THE CLASS APPEARS TO THE LAST DATA SUBSET

Type A

𝐶 𝐶 𝐶 𝐶 AVG

SFL

(𝑀)

𝑆 98.90±1.04 0.00±0.00 0.00±0.00 78.98±4.80 44.47±1.04

𝑆 96.75±2.71 56.43±11.28 0.00±0.00 84.05±3.36 59.31±2.72

𝑆 92.48±4.68 79.77±5.13 29.47±21.43 82.97±3.87 71.17±5.53

𝑆 84.40±8.29 74.15±9.05 57.18±24.64 89.02±3.13 76.19±5.12

𝐼𝑚 -14.5 17.72 27.71 10.04 31.72

Type B

𝐶 𝐶 𝐶 𝐶 AVG

SFL

(𝑀)

𝑆 98.43±1.33 0 0 82.45±4.47 45.22±0.91

𝑆 96.15±2.65 55.15±11.34 0 86.68±3.14 59.50±2.81

𝑆 93.00±4.08 80.18±4.94 29.60±22.74 84.63±3.46 71.85±5.66

𝑆 91.10±3.86 75.13±6.05 22.77±27.33 89.67±2.34 69.67±6.68

𝐼𝑚 -7.33 19.98 -6.83 7.22 24.45

TABLE II THE RECALLS (%) OF EVERY CLASS ON TESTING SET, WHERE AVG DENOTES THE ARITHMETICAL

AVERAGE OF THE RECALLS OF ALL THE CLASSES, 𝐼𝑚 DENOTES THE IMPROVEMENT FROM THE FIRST TIME THE

CLASS APPEARS TO THE LAST DATA SUBSET

Type A

𝐶 𝐶 𝐶 𝐶 AVG

Learn++.UDNC

𝑆 91.55±2.25 0 0 98.40±0.55 47.49±0.50

𝑆 78.65±3.53 91.55±1.48 0 98.90±0.33 67.28±0.96

𝑆 59.15±4.33 93.70±0.93 90.30±1.63 98.60±0.37 85.44±1.00

𝑆 56.75±4.56 94.75±0.57 90.35±1.61 98.75±0.35 85.15±1.07

𝐼𝑚 -34.80 3.20 0.05 0.35 37.66

SFL(𝑀)

𝑆 98.35±1.50 0 0 82.23±5.52 45.15±1.16

𝑆 97.30±2.20 67.78±9.03 0 83.02±4.93 62.03±2.68

𝑆 89.15±5.44 85.43±4.09 56.18±18.11 85.40±4.33 79.04±4.07

𝑆 74.13±10.63 88.08±2.97 79.90±9.45 87.28±4.15 82.35±1.60

𝐼𝑚 -24.22 20.3 23.72 5.05 37.2

Type B

𝐶 𝐶 𝐶 𝐶 AVG

Learn++.UDNC

𝑆 91.45±2.90 0 0 95.35±1.12 46.70±0.49

𝑆 79.05±3.85 89.70±1.65 0 96.20±0.76 66.24±0.87

𝑆 52.80±4.14 92.10±1.14 91.40±1.13 95.65±0.51 82.99±1.08

𝑆 50.30±3.86 93.25±1.06 91.15±1.14 95.75±0.51 82.61±1.01

𝐼𝑚 -41.15 3.55 -0.25 0.40 35.91

SFL(𝑀)

𝑆 98.37±1.37 0 0 83.15±5.60 45.38±1.20

𝑆 97.33±1.30 67.00±12.59 0 84.58±3.83 62.23±3.10

𝑆 89.35±4.91 85.47±4.11 58.50±14.78 86.40±2.96 79.93±2.93

𝑆 89.12±6.49 85.65±4.36 59.87±15.17 85.78±2.78 80.10±3.02

𝐼𝑚 -9.25 18.65 1.37 2.63 34.72

in , it was updated as , where is the

average recall of the th MLP on the new data subset.

3) After training with new data subset, and

 were combined to form a temp ensemble

 . If the geometric mean of all the recalls of

 on the new data subset was less than a prede-

fined threshold (e.g. o.5), then redo the training process.

The results of SFL with the above modifications (denoted

by SFLnew) are presented in TABLE IV (). It can be ob-

served from TABLE IV that SFLnew performs better than SFL.

Comparing with the results of Learn++.UDNC in TABLE II,

SFLnew shows more balance performance on all the classes.

The number of MLPs that used in SFLnew are less than that

used in Learn++.UDNC. Furthermore, in Learn++.UDNC,

numbers of individual classifiers (e.g., MLPs) will be added to

the ensemble as more data sets become available while in

SFLnew, the size of the ensemble will be almost fixed.

V. CONCLUSION AND FUTURE WORK

In this research, the main issues in incremental learning

were discusses and class imbalance in incremental learning

was focused on. According to the discussing the drawbacks of

our previously proposed method, an ensemble base method,

named Selective Further Learning (SFL) was proposed. In

SFL, when a new data set becomes available, part of the cur-

rent ensemble is selected to training with the new data set. In

order to address potential variety on classes in the new data set,

i.e., new coming up classes or disappearing of previous classes,

an extra weight is added to every output node of every MLP in

the ensemble. The extra weight indicates the confidence that

the MLP has learned about the relevant class. On the other

hand, Dynamic Sampling (DyS) method which was proposed

for class imbalance problems was used as the training method

to handle the class imbalance in incremental learning.

In the experimental study, we compared SFL with a recent-

ly proposed method, i.e., Learn++.UDNC. The results have

shown that SFL can outperform Learn++.UDNC. Some fur-

ther analyses were also presented to find out the detail behav-

iors of SFL and some modifications were made to improve

SFL.

The experimental results and discussions show that the

framework of SFL is efficient for class imbalanced incremen-

tal learning. However, some details of the framework, such as

the training method and the ensemble combining method, can

be designed better to improve SFL. This will be investigated

in our future work.

ACKNOWLEDGEMENT

This research has been partially supported by IEEE CIS

Walter Karplus Summer Research Grant 2011.

REFERENCES

[1] M. Salganicoff, "Tolerating concept and sampling shift in lazy learning
using prediction error context switching," Artificial Intelligence Review,

vol. 11, pp. 133-155, 1997.
[2] N. Japkowicz and S. Stephen, "The class imbalance problem: A system-

atic study," Intelligent Data Analysis, vol. 6, pp. 429-449, 2002.
[3] N. V. Chawla, N. Japkowicz and A. Kotcz, "Editorial: special issue on

learning from imbalanced data sets," ACM SIGKDD Explorations News-
letter, vol. 6, pp. 1-6, 2004.

[4] H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans-

actions on Knowledge and Data Engineering, vol. 21, pp. 1263-1284,
2009.

[5] G. A. Carpenter, S. Grossberg and J. H. Reynolds, "ARTMAP: Super-

vised real-time learning and classification of nonstationary data by a
self-organizing neural network," Neural networks, vol. 4, pp. 565-588,

1991.
[6] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.

Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental

supervised learning of analog multidimensional maps," IEEE Transac-

tions on Neural Networks, vol. 3, pp. 698-713, 1992.
[7] J. R. Williamson, "Gaussian ARTMAP: A neural network for fast in-

cremental learning of noisy multidimensional maps," Neural Networks,

vol. 9, pp. 881-897, 1996.
[8] M. C. Su, J. Lee and K. L. Hsieh, "A new ARTMAP-based neural net-

work for incremental learning," Neurocomputing, vol. 69, pp. 2284-2300,
2006.

[9] N. Kasabov, "Evolving fuzzy neural networks for super-

vised/unsupervised online knowledge-based learning.," IEEE transac-
tions on systems, man, and cybernetics. Part B, Cybernetics: a publica-

tion of the IEEE Systems, Man, and Cybernetics Society, vol. 31, p. 902,

2001.

TABLE IV THE RECALLS (%) OF EVERY CLASS ON TESTING SET OF SFLNEW WITH 𝑀 , WHERE AVG DE-

NOTES THE ARITHMETICAL AVERAGE OF THE RECALLS OF ALL THE CLASSES, 𝐼𝑚 DENOTES THE IMPROVEMENT

FROM THE FIRST TIME THE CLASS APPEARS TO THE LAST DATA SUBSET

Type A

𝐶 𝐶 𝐶 𝐶 AVG

SFLnew

(𝑀)

𝑆 97.65±1.64 0 0 85.30±4.24 45.74±0.89

𝑆 88.97±4.49 89.92±3.53 0 78.70±6.73 64.40±1.96

𝑆 71.92±5.49 91.22±3.31 80.85±8.11 82.65±7.48 81.66±2.73

𝑆 67.25±2.77 91.62±3.11 88.00±3.82 85.03±6.02 82.98±1.58

𝐼𝑚 -30.4 1.7 7.15 -0.27 37.24

Type B

𝐶 𝐶 𝐶 𝐶 AVG

SFLnew

(𝑀)

𝑆 97.88±1.53 0.00±0.00 0.00±0.00 85.12±4.30 45.75±0.89

𝑆 90.48±3.47 86.70±6.20 0.00±0.00 78.18±7.17 63.84±2.24

𝑆 70.80±9.85 90.35±3.67 81.00±9.39 82.70±6.19 81.21±1.98

𝑆 77.60±6.53 90.53±3.16 74.83±7.64 82.57±6.79 81.38±1.59

𝐼𝑚 -20.28 3.83 -6.17 -2.55 35.63

[10] C. Zanchettin, L. L. Minku and T. B. Ludermir, "Design of experiments

in neuro-fuzzy systems," International Journal of Computational Intelli-

gence and Applications, vol. 9, pp. 137-152, 2010.
[11] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An Incre-

mental Learning Algorithm for Supervised Neural Networks," IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 31, p. 497, 2001.

[12] R. Polikar, J. Byorick, S. Krause, A. Marino, and M. Moreton, "Learn++:

a classifier independent incremental learning algorithm for supervised
neural networks," in International Joint Conference on Neural Networks,

pp. 1742–1747, 2002.
[13] Y. Freund and R. Schapire, "A short introduction to boosting," Journal

of Japanese Society for Artificial Intelligence, vol. 14, pp. 771-780, 1999.
[14] M. Muhlbaier, A. Topalis and R. Polikar, "Learn++. mt: A new approach

to incremental learning," Multiple Classifier Systems, pp. 52-61, 2004.
[15] M. Muhlbaier, A. Topalis and R. Polikar, "Incremental learning from

unbalanced data," in IEEE International Joint Conference on Neural
Networks, pp. 1057-1062, 2004.

[16] M. D. Muhlbaier, A. Topalis and R. Polikar, "Learn++. NC: combining

ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes," IEEE transactions on

neural networks, vol. 20, pp. 152-168, 2009.
[17] G. Ditzler, M. Muhlbaier and R. Polikar, "Incremental Learning of New

Classes in Unbalanced Datasets: Learn++. UDNC," Multiple Classifier

Systems, pp. 33-42, 2010.
[18] G. Ditzler, R. Polikar and N. Chawla, "An Incremental Learning Algo-

rithm for Non-Stationary Environments and Class Imbalance," in Inter-

national Conference on Pattern Recognition, pp. 2997-3000, 2010.
[19] T. Seipone and J. A. Bullinaria, "Evolving improved incremental learn-

ing schemes for neural network systems," in IEEE Congress on Evolu-

tionary Computation, pp. 2002-2009, 2005.
[20] H. Inoue and H. Narihisa, "Self-organizing neural grove and its applica-

tions," in IEEE International Joint Conference on Neural Networks, pp.

1205-1210, 2005.
[21] W. X. Wen, H. Liu and A. Jennings, "Self-generating neural networks,"

in International Joint Conference on Neural Networks, pp. 850-855,

1992.
[22] Y. Liu and X. Yao, "Simultaneous training of negatively correlated

neural networks in an ensemble," IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 29, pp. 716-725, 2002.
[23] F. L. Minku, H. Inoue and X. Yao, "Negative correlation in incremental

learning," Natural Computing, vol. 8, pp. 289-320, 2009.
[24] K. Tang, M. Lin, F. L. Minku, and X. Yao, "Selective negative correla-

tion learning approach to incremental learning," Neurocomputing, vol.
72, pp. 2796-2805, 2009.

[25] M. Lin, K. Tang and X. Yao, "A Dynamic Sampling Approach to Train-

ing Neural Networks for Multi-class Imbalance Classification," submit-
ted to Pattern Recognition.

