
 

 

Abstract—Incremental learning is a learning model for learn-

ing new information from new data. In incremental learning, the 

data sets are available chunk by chunk. The learning model 

should be able to learn new information from new data sets with-

out accessing previously learned data sets and preserve previous-

ly learned information. In this report, class imbalance in incre-

mental learning is considered and a new framework, Selective 

Further Learning (SFL), is proposed. SFL is an ensemble based 

method. In SFL, when a new data set becomes available, part of 

the current ensemble is selected to Further Learn the new data set. 

Some experiments on synthetic data sets are implemented and 

the results and analyses show that SFL is able to outperform a 

recently proposed method. 

 

Index Terms—Incremental Learning, Class Imbalance, Selec-

tive Further Learning 

I. PROBLEM DESCRIPTION 

Normal machine learning problems require learning model 

to learning information from all the achieved data and all the 

data are stored. In practice, the data are usually updated all the 

time and new information is necessary to be learned from the 

new data. However, it is time consuming to learn new infor-

mation with accessing to the previous data and sometimes 

storing the learned data is expensive. In this situation, the 

learning model is required to have the ability of learning new 

information from new data and at the same time preserving the 

previously learned information without accessing the previous 

data. This learning model is called incremental learning.  

In incremental learning, the whole data set is not available 

in a lump. In another word, we can only get a part of the data 

set every time. We suppose that the whole data set   is divided 

into   subsets, i.e.,           . The rules of   and    are de-

noted as   and    respectively.  

In incremental learning, the aim of the learning model is to 

learn   by learning    from    respectively. The mainly diffi-

culty is that the previous learned rules may be forgotten when 

the model learns new rules from new data subsets, especially 

when the rules of different data subsets are different. This 

phenomenon was called catastrophic forgetting. If       
    , the learning model can learn    form    and    will 

not be forgotten when new data subsets are learned. In this 
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case, incremental learning is not real challenging. However, in 

practical,    are usually different between different data sub-

sets, so the catastrophic forgetting may happen.  

In our assumption, even though the rules are different be-

tween different data subsets, they are not inconsistent with  , 

i.e., the target concept is not changed. This phenomenon is 

also called virtual concept drift and it is different from real 

concept drift, in which the target concept is changed when 

new data subsets are available. In this research, it is assumed 

that no real concept drift will happen. Virtual concept drift 

was called sampling shift in [1] and it will be referred to in 

this work. When only sampling shift happens, if the rules can 

be characterized by a mean and covariance matrix, both of 

which are additive, then we can still get the rules of the whole 

data set easily. Unfortunately, most nonparametric approaches, 

such as Neural Networks, are not additive, and this comes into 

the challenge. 

There is another issue in incremental learning, i.e., class 

imbalance. In normal learning model, class imbalance problem 

has been studied by many researchers and there are plenty of 

literatures addressing class imbalance problems [2], [3], [4]. 

Class imbalance problems can also occur in incremental learn-

ing. Class imbalance may occur in mainly two cases: 

1) If the class distribution of the whole data set   is im-

balanced, the class distribution of data subset    will 

also be imbalanced. Furthermore, it will be common 

that samples of the minority classes may be missing in 

some data subsets. Sampling shift will occur in this 

case and the learning model will also suffer from cata-

strophic forgetting. 

2) Even though the class distribution of   is balanced,    

may also be class imbalanced. In typical case, all of the 

partial sets    are class imbalanced but the combined 

data set   is class balanced. Sampling shift will also 

occur in this case. 

In this research, we focused on class imbalance cases, in 

which sampling shift also occurred. Specifically, when sam-

pling shift occurs, new classes may come up in the new data 

subset and some previous classes may loss in the new data 

subset. When class distribution of the whole data set is imbal-

anced, this phenomenon will be more likely to happen to the 

minority classes. This is also the main issue in this research.  

The rest of this report is organized as follows. In Section II, 

we will briefly review some existed methods for incremental 

learning. In Section III, our method will be described. The 

experimental study will be presented in Section IV. Finally, 

we will conclude this research and discuss the future work in 

Section V. 
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II. RELATED WORK 

Some incremental learning methods have been proposed.  

The Adaptive Resonance Theory modules map (ARTMAP) 

[5] was a kind of neural network architecture which can self-

organize clusters in response to new data which are sufficient-

ly different from previous ones. ARTMAP is capable of in-

cremental learning and was frequently used in incremental 

learning [6], [7], [8]. ARTMAP can perform well in incremen-

tal learning. However, it is very sensitive to the vigilance pa-

rameter and it will cause over fitting if the vigilance parameter 

is not chosen properly. 

Kasabov proposed a one-pass incremental learning algo-

rithm, namely evolving fuzzy neural network (EFuNN) [9]. 

EFuNN can create new neurons for new input examples that 

are sufficiently different from previous ones. EFuNN can learn 

fast and adapt incrementally in an on-line mode. However, 

many parameters have to be set and the parameters have high 

influence in the training of EFuNN [10].  

Both ARTMAP and EFuNN are methods for training single 

model. They learn new rules by changing the architecture of 

the models such as adding new neurons. Recently, some en-

semble-based methods were proposed for incremental learning. 

Learn++ [11] [12] is an ensemble method which was based 

on AdaBoost [13]. There are also some improved versions for 

Learn++, such as Learn++.MT [14], Learn++.MT2 [15], 

Learn++.NC [16] and Learn++.UDNC [17]. Learn++.MT and 

Learn++.NC was proposed for handling the problem of “out-

voting” when learning new classes. Learn++.MT2 was pro-

posed for handling the imbalance between partial data sets. 

Class imbalance in incremental learning was addressed in [17] 

and [18], where Learn++.UDNC and Learn++.SMOTE was 

proposed respectively. Learn++.UDNC was proposed for in-

crementally learning new information from class-imbalanced 

data sets. In its assumption, no real concept drift will happen, 

which is also the assumption in this research. However, 

Learn++.SMOTE was proposed for incrementally learning 

new information from class-imbalanced data sets in a non-

stationary environments, i.e., real concept drift will happen.  

In [19], Seipone and Bullinaria employed evolutionary neu-

ral networks to solve incremental learning. The evolutionary 

algorithm was used to evolve the training parameters for the 

neural networks, i.e., the number of hidden units, the learning 

rate, initial weight distributions, and so on. At the training 

process, each neural network is trained with one partial data 

set. However, the evolving process for optimizing the parame-

ters considers the whole data set. Therefore, this approach is 

not strictly adapted to incremental learning. 

Self-Organizing Neural Grove (SONG) [20] is also an en-

semble method which uses Self-Generating Neural Networks 

(SGNNs) [21] as the individual learners. SGNN is based on 

Self-Organizing Map (SOM) and implemented as a self-

generating neural tree (SGNT). A pruning method is intro-

duced to prune the units of SGNT to reduce the computation 

time and the memory capacity. SONG has also been shown to 

be effective for incremental learning. Although the number of 

SGNTs is fixed, the number of total units of SGNTs grows as 

more data sets are incrementally learned. In [20], SONG was 

just employed to test its ability of incremental learning. In-

cremental learning was not the main issue and not deeply in-

vestigated. 

Recently, methods based on Negative Correlation Learning 

(NCL) [22] have also been proposed for incremental learning 

[23], [24]. NCL is a method to construct neural networks en-

semble. It is capable of improve the generalization perfor-

mance of the ensemble by decreasing the error of every neural 

network and increasing the diversities between neural net-

works simultaneously. In [23], Fixed size NCL and Growing 

NCL was proposed. In Fixed size NCL, the size of the ensem-

ble is fixed and all of the neural networks are trained when 

new data subsets become available. In Growing NCL, the size 

of the ensemble grows as the data sets are incrementally 

learned and only new added neural networks are trained when 

new data subsets become available. In [24], selective NCL 

was proposed. In selective NCL, new neural networks are 

added and trained when new data subsets become available 

and then a pruning method was employed to prune the ensem-

ble to make the size of the ensemble fixed. 

Although the existed methods have presented good perfor-

mance on incremental learning, most of them did not consider 

the class imbalance in incremental learning. In this research, 

class imbalance in incremental learning will be considered as 

the main issue. According to the discussion before, 

Learn++.UDNC considered the same issue of this research. 

Therefore, we will mainly compare our method with 

Learn++.UDNC. 

III. OUR METHOD 

A. The Framework 

In our previous work, i.e., Selective Negative Correlation 

Learning (SNCL) [24], selective ensemble was used. When 

new data subset became available, the previous ensemble was 

cloned and the new data subset was used to train the cloned 

ensemble. The two ensembles were combined to form an en-

semble and half of the individuals in the ensemble were 

pruned to keep the size of the ensemble fixed. This method 

has the following two drawbacks. One is the training process. 

The new data subset is used to train the cloned ensemble. 

However, the cloned ensemble has been converged when 

training with the previous data set. It might be difficult for the 

cloned ensemble to learn new information from new data sub-

set. The converging process might be slow. The other is the 

pruning process. When pruning the combined ensemble, the 

current data subset is used. If the rules of the current data sub-

set are quite different from that of the previous data subset, i.e., 

sampling shift occurs, the pruning process will prune all of the 

individuals of the previous ensemble. This will cause cata-

strophic forgetting. 

To overcome these drawbacks, we propose a new frame-

work for incremental learning, i.e., Selective Further Learning 

(SFL). The following presents the process of the framework 

(when new data subset becomes available), where the number 

of the individuals in the previously trained ensemble will be 

denoted as  . 

step 1. Fetch ⌊   ⌋ individuals from the current ensem-

ble and combine them as an ensemble       , i.e., 



 

 

the current ensemble is divided into two ensemble: 

       and       ; 

step 2. Replace one individual of        by a new initial-

ized one; 

step 3. Train        with the new data subset; 

step 4. Combine        and       :               

      ; 

In this framework, no pruning process will be executed so 

that the risk of catastrophic forgetting is reduced. On the other 

hand, the replacing process in step 2 will make the ensemble 

easier to learn new information. 

B. The Structure of the Ensemble 

We used Multi-Layer Perceptrons (MLP) to construct the 

ensemble. For a data set with   classes, the number of output 

nodes of each MLP was set as  . For a testing example, the 

output of  th output node indicates the possibility that the ex-

ample belongs to class  . In incremental learning mode, the 

data sets are available chunk by chunk. Different chunks 

might contain different classes. At testing stage, when an ex-

ample of class   is used for testing, the outputs of the MLPs 

which have not trained by any example of class   may mislead 

the outputs of the ensemble. In this situation, some modifica-

tions were made to the structure of MLP.  

An extra weight was added to every output node in every 

MLP. The weight was initialized as 0 at the initial stage and 

updated during learning every new data subset. We suppose 

the number of examples of class   in the new data subset is   . 

After training       , the extra weight of the  th output node 

was updated by   . The accumulation was executed for all the 

output nodes of the MLPs in       . At the testing stage, the 

output of the ensemble was calculated by the weighted aver-

age of MLPs: 

    ∑       
 
   ∑    

 
   ⁄           , (1) 

where     is the extra weight of the  th output node of the  th 

MLP,     is the output of the  th output node of the  th MLP 

and    is the  th output of the ensemble. Equation (1) was used 

only at the testing stage. At the training stage, the output of the 

ensemble was calculated by the arithmetical average of MLPs. 

On the other hand, when new classes appear in the new data 

subset, new output nodes were added to all of the MLPs in the 

current ensemble. The connection weights to the hidden nodes 

were set by initialization method and the extra weights were 

initialized as 0. 

C. Fetching process 

The fetching process in step 1 of the framework will base 

on the current data subset   . The individuals will be added to 

       one by one. Every time, the individual which makes 

       perform the worst on the current data subset will be 

added to       . At the same time, the following constraint 

must be satisfied. If the current data subset do not contain 

some classes that have appeared in the previous data subset, 

the fetching process should ensure that at least one MLP that 

has been trained with the data of those classes should not be 

added to       . To formulate this constraint, after dividing 

the current ensemble into         and       , the following 

constraint should be satisfied in       : 

 ∏ (∑     )     .  (2) 

where      class   is not contained in    . If there is no MLP 

that can be added to       , a new initialized MLP will be 

generated and added to       . 

D. Training process 

We have proposed a Dynamic Sampling (DyS) method for 

class imbalance problems [25], which can be used as the train-

ing method in step 3 of the framework. The main process of 

DyS for an ensemble is presented as follows (in one epoch): 

step 1. Randomly fetch an example   from the training 

set; 

step 2. Estimate the probability   that the example should 

be used for updating the ensemble. 

step 3. Generate a uniform random real number   be-

tween 0 and 1.  

step 4. If    , then use   to update the ensemble using 

Negative Correlation Learning (NCL) [22].  

step 5. Repeat steps 1 to 3 until there is no example in the 

training set. 

The above steps will be repeated until stop criterion is satis-

fied. The following shows the method for estimating  , which 

was the main issue in DyS. 

For an example belonging to class  , the real output of the 

example is denoted as                 . The margin can 

be defined as  

                .   (3) 

  indicates the confidence of the MLP to classify the example 

as class   and     indicates that the example is misclassified 

by the current MLP. The probability that the example should 

be used to update the MLP should be negatively correlated to 

 .  

In addition to the margin, the imbalance should be consid-

ered. The example belonging to a minority class should have a 

higher probability to be used to update the MLP than that of a 

majority class. The ratio of class   is defined as         , 

where    is the number of examples belonging to class   and   

is the number of all the examples. The probability that the 

example will be used to update the MLP should be negatively 

correlated to   .  
In class imbalance learning, the margin that the MLP dis-

tinguishes an example belonging to class    from other classes 

is defined as 

         ,  (4) 

where   is a normalization factor and we set             so 

that the margin for the class with the lowest number of exam-

ples is equal to (3).  

    indicates that the example is misclassified and the 

example need to be learned. So     if    . Otherwise, 

                       , and the probability   should be 

negatively correlated to  , so the probability can be estimated 

as           .  Therefore, the probability that an example 

belonging to class   will be used to update the MLP can be 

heuristically estimated as 
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   (              )           
  (5) 

In this selection mechanism: 

i. The examples that are misclassified will be selected to 

update the MLP. 

ii. For the examples that are correctly classified, the ex-

amples of minority classes are emphasized more than 

those of majority classes. 

iii. If the examples are correctly classified, those which are 

classified more ambiguous (i.e., the value of   in (3) is 

smaller) are emphasized more. 

The selection mechanism can allay the affection of class 

imbalance. However, if the selection mechanism is used over 

the training set directly, due to the class imbalance of the 

training set, more examples of the majority classes will be 

tested whether be used to update the MLP or not according to 

(5). Especially, at the beginning of the training process, the 

initial MLP will misclassify about 50% of the examples for all 

the classes. According to the first condition of (5), the mis-

classified examples will be used for training. Therefore, the 

selected examples will still be imbalanced and the MLP may 

easily be biased towards the majority classes.  

To avoid the bias, an oversampling process will be imple-

mented at the beginning of every epoch. At the beginning of 

the first epoch, the examples of all classes except for the larg-

est class will be duplicated to make the data set balanced, i.e., 

the number of every class is equal to that of the largest class. 

As the training process goes on, the duplicate ratio will be 

attenuated. Denote the duplicate ratio for class   at the first 

epoch as   , the duplicate ratio for class   will be heuristically 

attenuated to         at the end of the   th epoch, where 

    . 

IV. EXPERIMENTAL STUDY 

A. Experimental Setup 

For comparing with Learn++.UDNC, the synthetic data set 

which was used in [17] will be used in the experimental study. 

In [17], the data set was generated by 2D Gaussian distribution 

with predefined means and covariance matrices for the four 

classes. The means were    (   ),    (   ),    (    ) 

and    (    ). The features were assumed to be uncorre-

lated and the variances were         and            . TA-

BLE I shows the data distributions for two types of data sets. It 

can be observed that the training sets are class imbalanced and 

there are new classes in new data subsets. Especially, in Type 

B, class 3 appeared in    and then disappeared in   . 

One MLP (i.e.,    ) was used at the beginning, i.e., 

when the first data subset became available. The number of 

hidden nodes in every MLP was set to 20 and the activation 

functions of hidden nodes and output nodes were both sigmoid 

functions. The training error goal was 0.05 and the number of 

maximal epochs was 100. The data generation was repeated 

30 times and in every time, the training process was executed 

one time. The results were the average on the 30 executions. 

B. Experimental Results 

The recall of every class was used as the metric. After train-

ing with every data subset, the recalls of the classes on testing 

data set were estimated. TABLE II presents the results compar-

ing with Learn++.UDNC, the results of which were directly 

obtained from [17]. In TABLE II, AVG denotes the arithmetical 

average of the recalls of all the classes,    denotes the im-

provement from the first time the class appears to the last data 

subset. For example, class 2 was first appeared in   , so the 

improvement was the recall value after the training of    mi-

nus the recall value after the training of   . In the AVG col-

umn, the improvement was the last AVG value minus the first 

AVG value. 

It can be observed from TABLE II that, SFL can make more 

improvement than Learn++.UDNC. SFL is capable of han-

dling class imbalance. After the training of   , the recalls of 

class 1, which is a minority class, are higher than that of 

Learn++.UDNC in both Type A and Type B. SFL can also 

deal with new classes that come up in the new data subset 

(class 2 in    and class 3 in   ). In Type B, class 3 disappears 

in   . However, after training with   , the recall of class 3 was 

not reduced. Therefore, when previous classes disappear in the 

new data subset, SFL can also preserve the learned infor-

mation. Although SFL did not perform better than 

Learn++.UDNC when comparing by the value of average re-

call in Type A, SFL used much less MLPs. After training with 

  , 2 MLPs were used in SFL while 60 MLPs were used in 

Learn++.UDNC. 

C. Further Analyses 

To see the performance of SFL with more MLPs in the en-

semble, another experiment with      was executed. The 

results are presented in TABLE III. It can be observed from TA-

BLE III that when   increase, the performance of SFL become 

worse. Especially, new classes were not well learned after 

their first came up. To find out the reason of this phenomenon, 

some more detailed results were analyzed. After the training 

with every subset, the recalls of all the classes of every single 

MLP on both training set and testing set were recorded. The 

following presents some analysis. 

 According to comparing of the results on training set 

and testing set, we concluded that over fitting did not occur. 

 After training with   , in which class 3 came up, the 

MLPs in        can get a good recall on class 3. However, 

when        and        was combined, the recall value of 

class 3 degrade significantly. This is because class 3 has 

not been learned by        so that        will misclassify 

class 3 to other classes. When        and        was com-

bined,        may mislead the classification of an example 

of class 3.  

TABLE I TWO TYPES OF DATA DISTRIBUTIONS OF THE SYNTHETIC DATA SETS, 
WHERE 𝐶𝑖  DENOTES CLASS 𝑖, 𝑆𝑖  DENOTES THE 𝑖TH DATA SUBSET.  

 
Type A Type B 

 
𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  

𝑆  10 0 0 500 10 0 0 500 

𝑆  10 500 0 500 10 500 0 500 

𝑆  10 500 500 500 10 500 500 500 

𝑆  10 500 10 500 10 500 0 500 

Test 200 200 200 200 200 200 200 200 

 



 

 

 Besides, if the MLPs of        did not perform well at 

the overall level (e.g., the recalls are high on most of the 

classes but 0 on one class), they may also mislead the clas-

sification. Therefore, when updating the extra weights for 

every MLP, the overall performance on all classes should 

be considered.  

According to the above analysis, some modifications were 

made to SFL. The modifications were mainly on step 3 of the 

framework in Section III.A, including the updating of the extra 

weights in Section III.B and the training process in Section 

III.D.  

1) After training        with new data subset, the extra 

weight of the  th output node in the  th MLP was up-

dated by     , where    is the number of examples of 

class   and    is the geometric mean of all the recalls 

of the  th MLP on current data subset. At the same 

time, the training process should ensure that not all the 

   values are 0.  

2) If there are new classes in the new data subset, the ex-

tra weights in        was also updated. Denote     as 

the extra weight of the  th output node in the  th MLP 

TABLE III THE RECALLS (%) OF EVERY CLASS ON TESTING SET OF SFL WITH 𝑀    , WHERE AVG DE-

NOTES THE ARITHMETICAL AVERAGE OF THE RECALLS OF ALL THE CLASSES, 𝐼𝑚 DENOTES THE IMPROVEMENT 

FROM THE FIRST TIME THE CLASS APPEARS TO THE LAST DATA SUBSET 

Type A 

  
𝐶  𝐶  𝐶  𝐶  AVG 

SFL 

(𝑀    ) 

𝑆  98.90±1.04 0.00±0.00 0.00±0.00 78.98±4.80 44.47±1.04 

𝑆  96.75±2.71 56.43±11.28 0.00±0.00 84.05±3.36 59.31±2.72 

𝑆  92.48±4.68 79.77±5.13 29.47±21.43 82.97±3.87 71.17±5.53 

𝑆  84.40±8.29 74.15±9.05 57.18±24.64 89.02±3.13 76.19±5.12 

𝐼𝑚 -14.5 17.72 27.71 10.04 31.72 

Type B 

  
𝐶  𝐶  𝐶  𝐶  AVG 

SFL 

(𝑀    ) 

𝑆  98.43±1.33 0 0 82.45±4.47 45.22±0.91 

𝑆  96.15±2.65 55.15±11.34 0 86.68±3.14 59.50±2.81 

𝑆  93.00±4.08 80.18±4.94 29.60±22.74 84.63±3.46 71.85±5.66 

𝑆  91.10±3.86 75.13±6.05 22.77±27.33 89.67±2.34 69.67±6.68 

𝐼𝑚 -7.33 19.98 -6.83 7.22 24.45 

 

TABLE II THE RECALLS (%) OF EVERY CLASS ON TESTING SET, WHERE AVG DENOTES THE ARITHMETICAL 

AVERAGE OF THE RECALLS OF ALL THE CLASSES, 𝐼𝑚 DENOTES THE IMPROVEMENT FROM THE FIRST TIME THE 

CLASS APPEARS TO THE LAST DATA SUBSET 

Type A 

  
𝐶  𝐶  𝐶  𝐶  AVG 

Learn++.UDNC 

𝑆  91.55±2.25 0 0 98.40±0.55 47.49±0.50 

𝑆  78.65±3.53 91.55±1.48 0 98.90±0.33 67.28±0.96 

𝑆  59.15±4.33 93.70±0.93 90.30±1.63 98.60±0.37 85.44±1.00 

𝑆  56.75±4.56 94.75±0.57 90.35±1.61 98.75±0.35 85.15±1.07 

𝐼𝑚 -34.80 3.20 0.05 0.35 37.66 

SFL(𝑀   ) 

𝑆  98.35±1.50 0 0 82.23±5.52 45.15±1.16 

𝑆  97.30±2.20 67.78±9.03 0 83.02±4.93 62.03±2.68 

𝑆  89.15±5.44 85.43±4.09 56.18±18.11 85.40±4.33 79.04±4.07 

𝑆  74.13±10.63 88.08±2.97 79.90±9.45 87.28±4.15 82.35±1.60 

𝐼𝑚 -24.22 20.3 23.72 5.05 37.2 

Type B 

  
𝐶  𝐶  𝐶  𝐶  AVG 

Learn++.UDNC 

𝑆  91.45±2.90 0 0 95.35±1.12 46.70±0.49 

𝑆  79.05±3.85 89.70±1.65 0 96.20±0.76 66.24±0.87 

𝑆  52.80±4.14 92.10±1.14 91.40±1.13 95.65±0.51 82.99±1.08 

𝑆  50.30±3.86 93.25±1.06 91.15±1.14 95.75±0.51 82.61±1.01 

𝐼𝑚 -41.15 3.55 -0.25 0.40 35.91 

SFL(𝑀   ) 

𝑆  98.37±1.37 0 0 83.15±5.60 45.38±1.20 

𝑆  97.33±1.30 67.00±12.59 0 84.58±3.83 62.23±3.10 

𝑆  89.35±4.91 85.47±4.11 58.50±14.78 86.40±2.96 79.93±2.93 

𝑆  89.12±6.49 85.65±4.36 59.87±15.17 85.78±2.78 80.10±3.02 

𝐼𝑚 -9.25 18.65 1.37 2.63 34.72 

 



 

 

in       , it was updated as      , where    is the 

average recall of the  th MLP on the new data subset.  

3) After training        with new data subset,        and 

       were combined to form a temp ensemble 

      . If the geometric mean of all the recalls of 

       on the new data subset was less than a prede-

fined threshold (e.g. o.5), then redo the training process.  

The results of SFL with the above modifications (denoted 

by SFLnew) are presented in TABLE IV (    ). It can be ob-

served from TABLE IV that SFLnew performs better than SFL. 

Comparing with the results of Learn++.UDNC in TABLE II, 

SFLnew shows more balance performance on all the classes. 

The number of MLPs that used in SFLnew are less than that 

used in Learn++.UDNC. Furthermore, in Learn++.UDNC, 

numbers of individual classifiers (e.g., MLPs) will be added to 

the ensemble as more data sets become available while in 

SFLnew, the size of the ensemble will be almost fixed. 

V. CONCLUSION AND FUTURE WORK 

In this research, the main issues in incremental learning 

were discusses and class imbalance in incremental learning 

was focused on. According to the discussing the drawbacks of 

our previously proposed method, an ensemble base method, 

named Selective Further Learning (SFL) was proposed. In 

SFL, when a new data set becomes available, part of the cur-

rent ensemble is selected to training with the new data set. In 

order to address potential variety on classes in the new data set, 

i.e., new coming up classes or disappearing of previous classes, 

an extra weight is added to every output node of every MLP in 

the ensemble. The extra weight indicates the confidence that 

the MLP has learned about the relevant class. On the other 

hand, Dynamic Sampling (DyS) method which was proposed 

for class imbalance problems was used as the training method 

to handle the class imbalance in incremental learning.  

In the experimental study, we compared SFL with a recent-

ly proposed method, i.e., Learn++.UDNC. The results have 

shown that SFL can outperform Learn++.UDNC. Some fur-

ther analyses were also presented to find out the detail behav-

iors of SFL and some modifications were made to improve 

SFL. 

The experimental results and discussions show that the 

framework of SFL is efficient for class imbalanced incremen-

tal learning. However, some details of the framework, such as 

the training method and the ensemble combining method, can 

be designed better to improve SFL. This will be investigated 

in our future work. 
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