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Abstract—This paper proposes a simpler while more 

accurate wind power output forecasting method. To solve the 

stochastic problem, a scenario based operation and control 

system is required by many situations. Therefore, an efficient 

wind forecasting and simulation technique is mandated. In this 

paper, a support vector regression method is applied because of 

its simplex. To not lose the accuracy, wavelet analysis and an 

information theory based feature selection technology are also 

added to the algorithm. Finally, a case study on a wind farm is 

conducted, and the results are compared with some existing 

models to prove its superiority. 

Index Terms—wind power prediction, forecasting, machine 

learning, SVM, feature selection, information theory 

I.  INTRODUCTION 

Renewable energy has received extensive interests over the 

past decade, resulting from increasing concerns about energy 

security and sustainability. Wind energy generation, in 

particular, has been growing rapidly around the world and 

has become one of the most mature renewable generation 

technologies. The E.U. has set a binding target of 20% of its 

energy supply coming from wind and other renewable 

resources by the year 2020 [1]. In the U.S., a scenario of 

wind energy contributing 20% of the total energy supply by 

2030 is envisioned by the Department of Energy [2]. 

Renewable Portfolio Standard (RPS) mandates (or their 

equivalents) with renewable-production tax credits have been 

enacted in many countries and states to accelerate the 

development of the wind industry [3]. By the end of 2009, 

the worldwide installed wind capacity reached 159 GW, 

showing a 31.7 % increase from 2008 [4]. In the U.S., nearly 

10 GW of wind capacity came online in 2009, bringing the 

U.S. total installed wind capacity to over 35 GW [5], yet the 

wind energy penetration level in 2009 was only around 2% 

[6]. 

The greatest problem of wind power integration in the 

existing power system is the intermittent nature of wind 

power due to high correlation with stochastic non-stationary 

wind speed. Wind integration imposes many challenges to 

system operators such as operational problems (maintaining 

system frequency, power balance, voltage support, and 

quality of power), planning and economic problems 

(including uncertainty in wind power in to unit commitment, 

economic load scheduling, and spinning reserve calculations), 

etc. An accurate wind power forecasting tool to mitigate the 

undesirable effects in the growing wind penetration scenario 

is very much essential.  

The existing wind power forecasting methods can be 

generally classified into two categories: the physical models 

and the statistical models.  

The physical models try to use physical considerations as 

much as possible to reach the best possible estimate of the 

local wind speed. It takes the wind results from NWP 

(Numeric Weather Forecast) as its inputs. The NWP model 

results are usually for the geographical point of the wind 

farm or for a grid of surrounding points. However, it is the 

wind speed at the turbine position that is needed, thus more 

procedure is necessary, which is usually called „downscaling‟. 

The physical model uses a meso-scale or micro-scale model 

for the downscaling, which transfer these wind speed 

forecasts to the level of the wind generators. For running the 

downscaling models, it is necessary to have a detailed 

description of the terrain surrounding the wind generators. 

However, collecting the information of terrain conditions is 

one of the main difficulties in the implementation of physical 

models. After the downscaling process, the wind speed at 

each wind generator calculated into wind power, thus giving 

the prediction. 

Physical models are usually complex models, are run on 

super computers, which limits the usefulness of NWP 

methods for on-line or very-short-term operation of power 

system. The performance of physical models is often 

satisfactory for long (larger than 6 hours ahead) time 

horizons and they are on the other hand inappropriate for 

short-term prediction (several minutes to one hour) alone due 

to difficulty of information acquisition and complicated 

computation. As with short-term prediction, the physical 

models are usually not taken into consideration. 

Statistical models in their pure form try to find the 

relationships between a wealth of explanatory variables 

including NWP results, and online measured power data, 

usually employing recursive techniques. On one hand, 

tradition statistical models, usually uses traditional statistical 

method. For examples, typical time series models are 

developed based on historical values. Recursive technique is 

also usually used in this kind of models. 

To specify, statistical models can be divided into two 

groups: the time sequence independent model and the time 

sequence based model. The former one only uses a wind 

power distribution function to generate a wind power curve. 

Stochastic approaches are used to sample every single point 
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of the wind power curve. The latter one also considers the 

intensity of wind power variation as a time sensitive element, 

and such time series related forecasting methods are often 

employed in these models.  

The time sequence independent models were successfully 

applied in the early 21th century based on a Monte Carlo 

chronological simulation methodology, a Wei-bull 

distribution function based stochastic modeling and a 

multiple correlated wind speed series based modeling, 

respectively.[7-8] However, several studies discuss the 

limitation of these time sequence independent models in 

terms of their accuracy problems.[9-10] To set up a more 

robust time sequence based model, much research has been 

conducted into numerical and analytical modeling during the 

last decade, [11-13]. Among them, the stochastic differential 

equation with given marginal distribution and autocorrelation 

function have been adopted by many researchers. However, 

there are still many limitations for the numerical methods 

since it is difficult to set up a successful dynamic and 

stochastic predictor without artificial intelligence learning. 

Several researchers have tried to introduce some 

computational intelligence methods in this area, including 

genetic algorithm methods, Support Vector Machine methods 

(SVM), Self-organized Map (SOM) methods, kernel method 

and Neural Network (NN) methods [14-19], respectively. 

These methods work well in dynamic system simulation, but 

not for the stochastic dynamic systems.  

In this paper, a simulator combining the stochastic 

differential equation and SVR will be studied. This algorithm 

is the one of the most popular in the world, for its simple 

form and high performance in supervised learning problems. 

Recent results have shown that SVM-based models either 

compare favorably with [20] or outperform [21] the 

ANN-based models in WPP. For example, SVM-based 

models have been found to take less computational time 

compared to ANN-based models [22]. This gives the 

possibility to solve stochastic optimization problem by 

enumerating as many as scenarios. 

In addition, to reduce the calculation time without 

sacrificing the accuracy, it‟s important to select a compact 

subset of all the features in statistical learning models. A 

proper scale of the training set is both necessary for 

improving the efficiency and avoiding overfitting. An 

information theory based feature selection technology is 

employed here. 

This paper is organized as follow. Section II illustrates the 

basic mathematical form of support vector machine and the 

feature selection technology. In section III the proposed 

model is constructed and all the information is given in detail. 

Its performance on a specific case is evaluated and compared 

with existing models to show its superiority in section IV. 

Finally, conclusions and further discussions are given in 

section V. 

II.  WAVELET SUPPORT VECTOR MACHINE 

A.  Support Vector Machine 

An SVM is a general learning method developed from 

statistical learning theory with a better performance than 

many other routine methods. Statistical learning theory is 

based on a set of harder theory foundations, which provides a 

united frame in order to solve the problem of limited sample 

learning. The basic idea of SVM applied to regression 

prediction is described as follows [23] and [26]. 

Given the observed sample set: 
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is the describing function, f(  ) is the 

complexity term, and C is a constant which determines the 

tradeoff between the empirical risk and the model 

complexity.  

The main idea of nonlinear support vector regression is to 

map the input vector x into a high-dimensional feature space 

by using a nonlinear mapping function      and then 

perform linear regression on the feature space. In this higher 

space, there is a greater possibility that the data can be 

linearly separated. Then, the problem can be described as 
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The inner products φ(xi) in the high-dimensional space can 

be replaced by some special kernel functions         , 

which can be calculated. All the necessary computations can 

be performed directly in input space by calculation kernels. 

The popular kernels are shown as follows: 

1) radial basis function (RBF) kernel 

               ||    ||
 
  

2) polynomial kernel 

                
  

where γ and d are parameters. Different learning ma- 

chines with arbitrary types of decision surfaces can be 

constructed by using various kinds of kernel functions 

        . 

In actual application, the kernel function has an influence 

on the realized effect. It is important to select a proper kernel 

function to optimize the kernel-function solution. As 

mentioned earlier, polynomial kernel function, RBF kernel 



functions, and sigmoid functions are the three routine 

methods for kernel functions [24-25]. 

B.  Feature Selection Technology 

Wind power can be seen as a nonlinear mapping function 

of several exogenous meteorological variables and its past 

values. Assuming the past and forecast values of the 

exogenous variables, such as wind speed, wind direction, 

temperature, and humidity, are available at the wind farm 

location or a weather station close to the wind farm, a set of 

candidate forecasting features (inputs), say, can be 

constructed as follows: 
 

Wind Power: 𝑊𝑃 𝑡      .  𝑊𝑃 𝑡  𝑁𝑊𝑃  

Wind Speed: 𝑊𝑆 𝑡  𝑊𝑆 𝑡       𝑊𝑆 𝑡  𝑁𝑊𝑆  

Wind Direction: 𝑊𝐷 𝑡  𝑊𝐷 𝑡       𝑊𝐷 𝑡  𝑁𝑊𝐷  

Temperature: 𝑇 𝑡  𝑇 𝑡       𝑇 𝑡  𝑁𝑇  

Humidity: 𝐻 𝑡  𝐻 𝑡       𝐻 𝑡  𝑁𝐻  

 

The candidate inputs WP(t-1)….WP(t-    ) are the 

historical values of wind power, since wind power is 

dependent on its past values. WS(t) is the forecast value of 

wind speed for time interval „t‟ and WS(t-1)….WS(t-   ) 

are its past values, considering that wind speed is an 

important driver for wind power. Similarly, the forecast and 

past values of wind direction, temperature, and humidity are 

included in the set of candidate features. In the above formula, 

    indicates the order of back shift for the wind power 

candidate features, which sometimes is referred to as the 

order of the dynamical forecast system [27]. Similarly, 

    𝑁𝑊𝐷  𝑁𝑇      𝑁𝐻 are defined. From a data mining view 

point, these orders should be considered high enough so that 

no useful information is missed. However, a compromise is 

always necessary to avoid a too large set of candidate 

features. For instance, even by considering the low orders of  

    𝑁𝑊𝑆  𝑁𝑊𝐷  𝑁𝑇  𝑁𝐻    (only including the 

features of 24 hours ago for hourly wind power forecast), we 

reach 124 candidate features. Moreover, if the exogenous 

variables related to the wind farm are measured in more than 

one place, the candidate inputs of the exogenous variables 

should be repeated by the number of measurement sites. 

However, such a large set of inputs is not directly applicable 

to a forecasting engine, since it may include ineffective 

features, which complicate the extraction of input/output 

mapping function of the prediction process for the forecast 

engine and degrade its performance. Thus, the set of 

candidate inputs should be refined by a feature selection 

technique such that a minimum subset of the most 

informative features is selected and the other unimportant 

candidates are filtered out. 

Correlation analysis has been proposed for the feature 

selection of wind power forecast in [27] and [28]. However, 

wind power is a nonlinear mapping function of several input 

variables, whereas correlation analysis is a linear feature 

selection technique. Thus, it may not correctly evaluate the 

information value of the candidate inputs for wind power 

forecasting. Moreover, correlation analysis only considers the 

relevancy between the target variable and candidate inputs to 

rank them. However, in feature selection, it has been 

recognized that the combinations of individually good 

features do not necessarily lead to good estimation 

performance. In other words, “the m best features are not the 

best m features” [29]. It should also be noted that relevant 

features in a forecasting process may include redundant 

information. Redundant features can potentially degrade the 

learning process of the forecasting engine, besides the 

associated unnecessary extra computation burden. Hence, an 

efficient nonlinear feature selection technique, which can 

evaluate both relevancy and redundancy of the candidate 

features, is necessary. 

Here a new kind of feature selection technology called 

mRMR (max-relevance, min-redundancy method) is used 

based on mutual information in information theory. In 

information theory, the mutual information of two random 

variables, given their probability distribution function, is 

defined as follows: 

       ∬         
      

        
     

Max-Relevance is to search features satisfying (4), which 

approximates D(S, c) with the mean value of all mutual 

information values between individual feature    and target 

variable c: 
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It is likely that features selected according to Max- 

Relevance could have rich redundancy, i.e., the dependency 

among these features could be large. When two features 

highly depend on each other, the respective class-discrimi- 

native power would not change much if one of them were 

removed. Therefore, the following minimal redundancy 

(Min-Redundancy) condition can be added to select mutually 

exclusive features [30]: 
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The criterion combining the above two constraints is called 

“minimal-redundancy-maximal-relevance” (mRMR) [30]. 

We define the operator   𝐷    to combine D and R and 

consider the following simplest form to optimize D and R 

simultaneously: 

     𝐷       𝐷    

 

In practice, incremental search methods can be used to find 

the near-optimal features defined by  . Suppose we already 

have feature set     , the feature set with m-1 features. The 

task is to select the m
th

 feature from the set        .This is 

done by selecting the feature that maximizes  . The 

respective incremental algorithm optimizes the following 

condition: 
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III.  PROPOSED MODEL 

The proposed wind power forecasting model consists of 

two stages, the feature selection stage, and the support vector 

machine stage. The feature selection stage selects the most 

informative and the least redundant feature set from a various 

candidate features, and then these features are chosen as 

inputs of our support vector machine. Then it is used to train 

the data and test on the test set to evaluate its performance. 

For that in our feature selection algorithm, we need the joint 

probability distribution between our features and between our 

features and the target variable wind power, a simple method 

to estimate the joint probability distribution of two random 

variables is introduced here. 

A.  Feature Selection 

Firstly the data is normalized to be within the range of [0, 

1].  

Feature representation, which aims to extract certain 

characteristics from the original data, plays a key role in 

determining the performance of WPP. In the previous section, 

we have introduced the mRMR methods; here we use the 

more practical form of incremental searching.  

Each step in the incremental searching algorithm, we get a 

new set of selected features, and we list them below: 

   𝑆    𝑆  

Here comes the problem, how many features should we 

really use, that is, which of the feature set we should really 

use above. The answer to this question should be related to 

our training sample set. According to statistical learning 

theory, too many features in a model might cause overfitting 

problems; however, if the training set is large enough, the 

overfitting problem can be avoided. The gives light to our 

feature selection strategy: just go through the N feature set 

above and see which one has the best performance. This is 

done by the cross-validation method, which is a powerful 

tool to estimate the generalization error of a model trained by 

a specific training set, using the training set itself. Details of 

cross-validation will be given below. Here we use our sample 

set to calculate the cross-validation error for each of our 

feature set. For cross-validation is a good estimation of 

generalization error, the feature set with the least 

cross-validation error is chosen as our feature set. 

B.  Estimation of Probability Distribution Function 

The basic definitions of the mutual information technique 

use logarithms in base 2. So, this fact motivates using 

binomial distributions for the inputs and output [31]. For this 

purpose, at first, all the candidate inputs and target variable 

are linearly normalized in the range of [0, 1]. Then, the 

median of each normalized variable is computed. Half of the 

values of the normalized variable are more than its median 

which are rounded to 1 and the other half are less than it 

which are rounded to 0. After this process, a binomial 

distribution is obtained for each candidate:  

       
∑         

   

 
 

where the n is the number of samples. 

The joint probability function can also be deduced from 

this simplified binomial distributions. 

C.  Support Vector Machine 

After we have got our selected feature set, we use training 

sets consisting of these features to train our model. Among 

the kernel functions, we choose the RBF kernel function.  

In general, it is suggested to use RBF kernel function to 

realize the non-linear regression. A recent result by Keerthi 

and Lin shows that if RBF is used with model selection, then 

there is no need to consider the linear kernel. The kernel 

matrix using sigmoid may not be positive definite and in 

general its accuracy is not better than RBF.  

By now we have determined all the parameters of the 

models except for the two: C, which is the penal factor in 

SVM; and the γ in the kernel function.  

To maximize the performance of SVM model, a 

grid-search algorithm on cross-validation accuracy of SVM 

models will be conducted.  

The cross-validation allows us to evaluate the trained 

model with specific parameters only by the training data. We 

divide the training data into two equal half, and then two 

models with the given parameters will be trained by the two 

data sets separately and then each of them will be used to 

predict the other part of the whole training set. The average 

of two MSE we get will be used as the measurements of this 

trained model with the parameters. The cross-validation just 

points out that we cannot measure our model using the data 

with which the model is trained and data outside the training 

set should be used. It‟s a practical algorithm to measure the 

one model with particular parameters.  

The grid search of (C,γ) over cross-validation means that 

go through a sets of parameters of C    0        9    
       0.5   4 . Each combination of the above C and γ 

will be used to conduct the cross-validation and the one with 

the least cross-validation MSE will be adopted to train the 

model with the whole training set. This method is an easy, 

practical and generally-used approach to select the 

parameters to maximize the performance of a model. 

IV.  MODEL VALIDATION 

A.  Data Description 

In the dataset, the hourly data measured wind power data 

in one wind farm from 2009/07/01 at 0‟o clock to 2010/12/31 

at 23‟o clock is given. The 48-hour ahead Numerical 

Weather Prediction data, given every 12 hours, from 

2009/07/01 at 0‟o clock to 2010/12/31 at 12‟0 clock is also 

available, and the one piece of NWP is consisting of two 

values: wind speed and wind direction.  



Our prediction target is to give 48-hours ahead prediction 

every 12 hours.  

Our data is consisted of 1097 12-hours, In total we have 

1097 samples for the 48-hour ahead 

B.  Prediction Schemes 

Since the prediction horizon is larger than the time 

resolution of the data samples, we develop a separate SVM 

for each prediction ahead hour. Thus, different prediction 

schemes can be used, including the fixed-step scheme, 

recursive scheme. 

For a given prediction horizon, the fixed-step scheme 

predicts the value at the next h
th

 hour by using actual 

historical data only: 

 ̂                 

In the recursive scheme, the one-step scheme is applied 

iteratively times to predict at the next h
th

 step. In each 

iteration, the predicted values from previous iterations are 

used as additional historical data to predict at the next step 

 ̂       ̂       ̂         ̂               

In our model we will use the recursive scheme, for the 

advantage of the recursive scheme is that it is accurate to 

predict the next-step value in each iteration.  

C.  Selected Features 

Based on the feature selection method in section III, some 

of the chosen features are listed below: 

Wind Power: 𝑊𝑃 𝑡      𝑊𝑃 𝑡      .   𝑊𝑃 𝑡      

Wind Speed: 𝑊𝑆 𝑡   𝑊𝑆 𝑡          𝑊𝑆 𝑡      

Wind Direction: 𝑊𝐷 𝑡   𝑊𝐷 𝑡         𝑊𝐷 𝑡      

D.  Evaluation 

The main index to evaluate our model is the RMSE (Root 

Mean Squared Error) as below: 

    𝑆  √
∑      ̂  

  
   

 
 

Where the    stands for wind power measurements, and 

the  ̂  stands for the predicted wind power at the 

corresponding time interval. The real measurements and 

predicted values should be normalized into [0, 1] to get a 

percentage RMSE. 

After we training process, we use our model to give 

prediction on our test sets, we‟d like to give the time-domain 

plot of our predicted wind power and real measurements. 

However, our prediction horizon is 4 times bigger as the 

prediction interval, so there are multiple schemes. We can 

use the first 12 hours of each prediction to give our results. 

Another choice is that, in industry, it‟s often useful that we 

give the24-hour prediction of the next day at 12:00 clock this 

day. So we can use the 13 to 36 hour ahead prediction at 

12:00 each day to construct a time domain plot. Here we give 

both the results: 

  

 

 

From the above plot we can see that the blue line basically 

catches up the red line, and no evident can be found. Note 

that between hour 850-1000, the red line is zero however the 

blue line is around 0.2. After examining the wind-speed data 

of this period, we can judge that during this period the wind 

farm is shut down manually, due to unknown reasons. Later, 

the error computation will ignore this period. 

It‟s also useful to examine the relationship between the 

RMSE and the ahead hour. Generally speaking, the higher 

the ahead hour is, the higher the error is. In the following plot, 

the relationship between the ahead hour and the error is 

shown, besides, in order to show that the feature selection 

technology actually works in our proposed model, 

persistence model and SVM without feature selection is also 

shown as a benchmark. 
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From the above figure we can see our proposed model has 

the highest accuracy compared with the persistence model 

and the SVM without feature selection. It also proves that our 

proposed feature selection algorithm is effective to improve 

the model accuracy. 

The results are listed below: 

 
Algorithm 1-12h 13-36h overall 

SVM+mRMR 14.33% 17.18% 16.86% 

SVM+all features 15.81% 19.38% 18.66% 
Persistence 20.73% 33.47% 31.52% 

 

From the above table we can see that the with the mRMR 

feature selection technology, the RMSE of the SVM 

decreases by round 2%, and is only half of the RMSE of 

persistence model. 

V.  CONCLUSION AND DISCUSSION 

Wind power forecasting is the one of the most challenging 

problem in the world, due to the stochastic and uncertain 

nature of wind speed. Recent years lots of statistical learning 

algorithms has been introduced into this problem to try to 

predict the wind power, including ANNs, SVM. However, 

seldom have people dealt with feature selection problems. 

The selection of feature has a great impact on the efficacy of 

the model. Actually the model itself is only a statistical one, 

and it does not contain any information of the physical 

characteristics of our predicted object; however, physical 

information lies in the feature we select, thus feature 

selection is the door to connect the physical world to the 

statistical models. To some extend it‟s the key of our 

prediction problem. 

In this paper, an information theory based feature selection 

algorithm is proposed, using the mutual information to select 

the most relevant and the least redundant features. Existing 

feature selection technology are linear ones like covariance 

analysis, PCA, however the relation between the inputs and 

outputs in wind power prediction problem is not linear, so 

these existing technologies are not good enough. The 

proposed feature selection technology, however, solves the 

problem, and its powerful to select features that is 

non-linearly connected with the outputs. Then this 

technology then combined with the powerful support vector 

machine.  

Results show that this feature selection technology is a 

powerful one that effectively selected useful features. 

Comparisons have been made to existing models to show the 

superiority of this model. 

However, the mutual information method relies on the 

estimation of joint distribution of variables; this is usually 

hard given limited sizes of sample sets. In this paper only a 

simple version based on binomial distribution is used, further 

studies might focus on a better estimation of 

joint-distribution of variables. 
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Abstract—With the significant growth of the installed capacity
of wind power, the variability of wind energy production puts
greater stress on the power system operation. In this situation,
more rapid regulation reserve is required, which escalates the
scarcity of balancing service. A combined energy and regula-
tion reserve market model is proposed in previous work by
introducing wind energy into reserve market, but the previous
work mainly concentrates on the bidding strategy and its relative
revenue on the side on wind producer. This paper focuses
on evaluating the new bidding strategy on the side of system
operation by simulating a day-ahead unit commitment problem,
and it is derived that in this new market mechanism, more
secure system operation can be achieved with lower dispatch
cost, through comparing the scheduling results under different
bidding strategies.

NOMENCLATURE

k Index for unit.

N Number of non-wind units.

Nw Number of wind power units.

Pk(t) Amount of electricity generated by generator k

in time period t.

Pw,k(t) Actual output of wind power unit k at time t.

Zk(t) Binary variable to indicate if generator k is on

in time period t.

URk(t) Amount of up regulation reserve capacity pro-

vided by generator k in time period t.

DRk(t) Amount of down regulation reserve capacity

provided by generator k in time period t.

Conk Start-up cost for generator k if it is turned on.

Coffk Shut-down cost for generator k if it is turned on.

Cak Half of start-up cost plus shut down cost.

Cbk Half of start-up cost minus shut down cost.

D(t) Forecasted system demand at time t.

URreq(t) System up regulation reserve requirement at time

t.

DRreq(t) System down regulation reserve requirement at

time t.

URrampk Ramp-up rate limit of unit k.

DRrampk Ramp-down rate limit of unit k.

The research is funded by IEEE Computational Intelligence Society Sum-
mer Research Grant, 2012.

P
f
w,k(t) Forecasted generation of wind power unit k at

time t.

P b
w,k(t) Bidding generation of wind power unit k at time

t.

P s
w,k(t) Generation of wind power unit k at time t in

scenario s.

P c
w,k(t) Committed output of wind unit k at time t.

Pmin Lower limit of real power generation.

Pmax Upper limit of real power generation.

URkmax Up regulation reserve limit of unit k.

DRkmax Down regulation reserve limit of unit k.

a, b, c Quadratic energy cost coefficients.

bur, cur Quadratic up reserve cost coefficients.

bdr, cdr Quadratic down reserve cost coefficients.

πUR+ The price for over-provision of UR reserve.

πE+ The price for over-generation.

πUR− The price for under-provision of UR reserve.

πE− The price for under-generation.

πUR Market price for up regulation reserve.

πE LMP.

TUR Penalty from imbalance UR output.

R Revenue from the combined market.

RE Revenue from the energy market.

RUR Revenue from the up regulation reserve market.

I. INTRODUCTION

Wind generation is one of the fastest growing sources of

energy in the world. Several regions have already set targets

for the level of wind energy penetration into power grids. The

target set by the U.S. Department of Energy is 20% by 2030

[1]. The European Union’s target is 14%-17% by 2020 and

26%-34% by 2030 [2]. However, due to the stochastic nature

of wind, even if the state-of-the-art wind forecasting methods

are utilized, the average day-ahead wind production forecast

errors are still around 25%-30% for a single wind plant and 15-

18% for a control region [3]. As a result, some of the power

systems with large wind penetration increase a considerable

amount of additional spinning reserve to cover the potentially

large deviations from the day-ahead wind power forecast [4].

Many works on establishing stochastic unit commitment(UC)

problems are conducted to reduce the reserve requirement and



the dispatch cost without violating the system security and

reliability requirement [5]–[7]. At the same time, there are

some other systems which normally use conservative wind

forecasts, 80% exceedance forecasts for example, in the day-

ahead scheduling process to ensure enough capacity online.

In regulated market, this method is equivalent to curtailing

wind power generation so as to minimize the impact of

wind uncertainty, such as the market in China. This results

in under-utilization of wind power. However, in deregulated

market, due to the much lower cost of the wind power and

lack of over-provision penalty during real-time operation, the

actual wind commitment will exceed the bided energy most

of time. Therefore, a significant amount of down reserve (DR)

will be needed for energy balancing. On the side of wind

plants, Frequent wind curtailments will reduce their revenue

as well, since no compensation is paid for curtailments in most

electricity markets [8]. Thus neither side obtains a benefit from

the present mechanism.

The new mechanism allows wind plants to participate in

both the energy and reserve markets, and incentives wind

plants to reduce their short-term production variations through

a proper deviation-penalty design. It has been shown in [9]

that with the proposed market mechanism, 1) compared to

the existing market operation, wind plants can increase their

revenues by optimally bidding into the energy and reserve

markets; 2) real-time wind productions are closer to their day-

ahead commitments; and 3) additional fast, although variable,

reserve from wind can be used towards grid frequency regula-

tion, benefiting grid security. However, it has only analysed the

benefits of this model on wind producers side [9]. Still, there

are not any system operation analysis model, and its relative

potential impacts on the grid side have never been discussed.

This paper focuses on analysing the new incentive mechanism

based on the combined market [9], to encourage wind pro-

ducers to regulate their wind generation bids. Persistent price

forecasts are used in this paper, and different market schemes

are compared. Impacts of different wind penetration levels

on the balancing reserve requirements and electricity prices

will be evaluated. This paper is organized in the following

way. In Section III, an introduction of this combined market

mechanism is presented, and the optimal bidding outputs are

also calculated to be used in system operation. In Section

IV, system unit commitment is formulated as a mixed integer

quadric programming problem, and a single bus case study

is presented. Section V gives the analysis of operation results

and summarizes the paper.

II. INTRODUCTION OF COMBINED MARKET AND WIND

BIDDING STRATEGY

This section discusses the wind plant’s optimal bidding

scheme given price signals and probabilistic forecasts pro-

posed in [9]. It assumes that in the following discussions,

the market prices are estimated based on the electricity and

reserve price of the former day. It is reasonable that bids

from any individual wind plant do not affect the market prices

because the clearing price in settlement is decided by the most

expensive accepted offer.

A. Energy Market

With sufficient transmission capacity, the revenue of a

wind producer for a certain settling interval is related to its

committed output and the actual production, as in

RE = πEP
c
w,k + TE (1)

TE is given by

TE =

{

πE+(Pw,k − P c
w,k), Pw,k ≥ P c

w,k

πE−(Pw,k − P c
w,k), Pw,k ≤ P c

w,k

(2)

In general, 0 ≤ πE+ ≤ πE ≤ πE−. It is because the wind

plant revenue monotonically increases as the wind plant output

power increases. In deregulated market, ISOs cannot affect the

short-term wind plant output power. All of the wind power

variations must then be absorbed by regulation reserve from

other controllable resources.

B. Ancillary Market

It is assumed that deviation penalties also exist in the

reserve markets and separate products are available for up

and down regulation reserve. Since a wind plant can provide

down regulation reserve (up to its minimum output power)

at virtually no cost, the price for down regulation reserve is

expected to be low with the participation of wind plants. On

the other hand, it depends on the availability of wind for a

wind plant to provide up regulation (UR) reserve, therefore, the

price for UR reserve is expected to be high. In the following

discussions, the price for down regulation reserve service is

assumed to be negligible and only the revenue from providing

UR reserve is considered. The revenue of a wind plant from

the reserve markets is given by

RUR = πURURc
w,k + TUR (3)

TUR is given by

TUR =

{

πUR+(URw,k − URc
w,k), URw,k ≥ URc

w,k

πUR−(URw,k − URc
w,k), URw,k ≤ URc

w,k

(4)

Similar to the energy market, it is expected that the following

price relationship holds

Price Assumption I : 0 ≤ πUR+ ≤ πUR ≤ πUR− (5)

C. Combined Energy and Regulation Reserve Markets

In general, πE and πUR, are determined by the simultaneous

co-optimization of the energy and reserve markets. Since there

is a fuel cost associated with producing energy, the reserve

is only an opportunity cost without any actual cost. Thus it

is expected the following relationship for imbalanced prices

holds

Price Assumption II : πUR+ ≤ πE+ ≤ πUR− ≤ πE− (6)

In most of markets, the price for over-generation is zero, i.e.,

πE+ = 0, after the generation exceeds a certain dead band.



R =







πE+Pw,k + (πE − πE+)P
c
w,k + (πUR − πE+)URc

w,k Pw,k ∈ [P c
w,k + URc

w,k, Pw,kmax]

πUR−Pw,k + (πUR− − πE)P
c
w,k + (πUR− − πUR)URc

w,k Pw,k ∈ [P c
w,k, P

c
w,k + URc

w,k]

πE−Pw,k + (πE− − πE)P
c
w,k + (πUR− − πUR)URc

w,k Pw,k ∈ [0, P c
w,k]

(7)
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Fig. 1. Bidding curves based on different bidding strategies.

Thus, the assumption of πE+ ≤ πUR− in (6) holds under most

circumstances. The revenue of a wind plant from the energy

and reserve markets is then given by the equation (7) at the

top of this page.

This strategy can be explained based on (5). When Pw,k is

less than P c
w,k + URc

w,k, the wind plant will try to fulfill its

committed output power first, because it results in a higher

marginal revenue of πE−. After the wind plant fulfills its

committed output power, it will then provide UR reserve

for a marginal revenue of πUR−. When the total available

wind power is more than P c
w,k + URc

w,k, the wind plant will

output all of its excessive power, unless being called to curtail,

since additional energy now yields a higher marginal revenue

(πUR+ ≤ πE+).

D. Wind Plant Committed Output with Different Market

Schemes

As is mentioned in Section II, three bidding schemes will be

discussed in this paper, e.g. S1 - conservative wind forecasts in

the energy market; S2 - optimal bids in the energy market; S3

- optimal bids in the proposed combined energy and reserve

market. This part will specify the committed output of wind

plants based on these three bidding strategies.

No matter which bidding scheme is taken into application,

a probability analysis is required. Since this paper emphasizes

the methodology to obtain an optimal bidding strategy, the

selection of wind probability distribution can be relatively

flexible. An alpha-beta distribution based wind probabilistic

forecast is introduced in [10].

For conservative bidding strategy, a 95% exceedance fore-

cast is used in this paper, as is shown in Fig.1. It also shows

an example of the wind plant commitment curves from the

other two bidding strategies. In one strategy, the wind producer

participates only in the energy market, where the optimal

committed output power P c
w,k, depends on the market prices

and wind probabilistic forecast [10]. In the other one, the wind

producer participates in both markets. On the basis of the

analysis in [9], the best bidding strategy is solved by:

maxE[R(P c
w,k, URc

w,k)] (8)

s.t.

Pw,kmax − P c
w,k − URc

w,k ≥ 0 (9)

P c
w,k ≥ 0, URc

w,k ≥ 0 (10)

To explain the results, first define

A =
πE − πUR

πE− − πUR−

, B =
πUR − πE+

πUR− − πE+

(11)

Note that according to (4), it can be derived that B ≤ 1.

The optimal bidding scheme depends on the values of A and

B, which is summarized in the following cases.

1) Case 1: 0 < A < B: It is optimal to bid in both energy

and reserve markets, and the optimal strategy is

P c∗
w,k = F−1(A), URc∗

w,k = F−1(B)− P c∗
w,k (12)

where F−1(1) = Pw,kmax.

2) Case 2: A > 0 and A ≥ B: In this case, it is optimal

to bid only in the energy market, and the optimal strategy is

P c∗
w,k = F−1(

πE − πE+

πE− − πE+

), URc∗
w,k = 0 (13)

Note that since πE+ ≤ πE ≤ πE− and 0 ≤ (πE − πE+)/
(πE− − πE+) ≤ 1, (13) is valid. The optimal solution in this

case is the same as [10], where only the energy market is

considered.

3) Case 3: A ≤ 0, i.e., πE ≤ πUR: In this case, it is

optimal to bid only in the reserve market, and the optimal

strategy is

P c∗
w,k = 0, URc∗

w,k = F−1(B) (14)

Note that the condition for this case implies πE+ ≤ πUR.

Thus, B ≥ 0 in this case and F−1(B) is valid. Note that the

reserve bided in the first day is not as much as other days. This

is because the predicted energy price and reserve price used in

the first day comes from actual database without trading any

wind power in reserve market, and relative low level wind

penetration. Thus, the reserve price is still not high enough to

encourage wind producers to participate in the reserve market.

In this paper, all the discussions start from the second day.

III. SYSTEM OPERATION FORMULATION AND

CASE STUDY

In current system operation center, day-ahead schedule (UC)

and real-time balancing (Optimal Power Flow) are considered

separately. In day-ahead schedule, ISOs schedule the startup

and shutdown state and the power output of each generator

for each time interval in order to minimize the overall cost
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Fig. 3. Hourly load forecast curve (Data selected from ERCOT market and
scaled).

over the next 24 hours. In real time schedule, ISOs re-adjust

each generator’s output to balance demand and generation.

This study only focuses on day-ahead UC problem.

The UC with wind generation could be formulated as an

optimization problem (15)-(25). The objective is to sched-

ule the non-wind unit state and generation, up frequency

regulation and down frequency regulation reserve at time

t(t = 1, 2, ..., T ), so that the total dispatch cost including

energy, reserve, startup, and shutdown cost over time horizon

T (T = 24) is minimized. Equation(15) is the objective

function used in this model. Equation (16) and (17) are the

generation limits. Equation (18) is power balance equations.

Since wind generators are non-dispatchable units, it is reason-

able to assume wind committed outputs are negative loads.

The same as wind committed up frequency reserve balance

equation shown in (19). URreq(t) is calculated from the

system reliability analysis and empirically set as 10% of the

peak of loads demand. Equation (20) is the down frequency

reserve balance equation. Regulation limits for non-wind units

are defined in (21) and (22). Equation (23) and (24) denote

generator ramp rate limits; this constraint holds if and only if

both UGi,t and UGi,t−1 are equal to 1. A mixed integer quadric

programming solver is implemented to obtain optimal UC. In

order to study the combined energy and reserve market model,

a single bus system with aggregated coal (1000MW) and gas

(500MW) plants, and 10 individual wind plants are selected

from the NREL EWITS database, as is shown in Fig.2. The

total wind power over a typical summer week is shown in

Fig.3 Balancing reserves from the aggregated coal and gas

plants are scheduled by solving (15)-(25).
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Fig. 4. Hourly forecast wind generation curve and actual wind generation
curve (Data selected from NREL EWITS database).

min
24
∑

t=1

N
∑

k=1

[akZk(t) + bkPk(t) + ckP
2
k (t)]

+ Cak[Zk(t)− Zk(t− 1)]2 + Cbk[Zk − Zk−1]

+ bUR,kURk(t) + cUR,kUR2
k(t)

+ bDR,kDRk(t) + c2DR,k(t)

(15)

s.t.

Pk(t) + URk(t)− Pmax,kZk(t) ≤ 0 (16)

Pk(t)−DRk(t)− Pmin,kZk(t) ≥ 0 (17)
N
∑

k=1

Pk(t) = D(t)− P c
cw,k(t) (18)

N
∑

k=1

URk(t) = URreq(t)− URc
w,k (19)

N
∑

k=1

DRk(t) = DRreq(t) (20)

DRk(t) ≤ DRkmax (21)

URk(t) ≤ URkmax (22)

Pk(t)− Pk(t− 1)− [1− Zk(t− 1)]

× Pkmin ≤ URrampk (23)

Pk(t− 1)− Pk(t)− [1− Zk(t)]

× Pkmin ≤ DRrampk (24)

0 ≤ Zk(t) ≤ 1 (25)

Zk(t) ∈ Z, Pk(t) ∈ R (26)

∀k = 1, 2, ..., N, ∀t = 1, 2, ..., 24 (27)

Data for non-wind generators can be found in Table I. The

non-wind generator energy bidding data is shown in Table II.

The ancillary service bidding data for non-wind generators can

be found in Table III. The hourly load forecast curve is shown

in Fig.3, while the total wind power over a typical summer

week is shown in Fig.4. The committed wind outputs based

on different market bidding scenarios are shown in Fig.1 in

Section III. The forecast price curve of energy and reserve

used by wind producers is shown in Fig.5.



0 2 4 6 8 10 12 14 16 18 20 22 24
10

20

30

40

50

60

70

Time(h)

P
ri
ce

($
M

W
/h

)

 

 

Energy Price

UR Price
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TABLE I
GENERATOR DATA

Gen. Pmin Pmax Ramp Up Ramp Down Initial State
Unit (MW) (MW) (MW/h) (MW/h) at time 0

G1 100 1000 200 50 OFF

G2 20 500 200 20 OFF

IV. RESULTS AND DISCUSSIONS

A. Conservative Wind Forecasts in the Energy Market

In conservative wind forecast market, the reserve require-

ment is 10% of total demands. Additional up reserve for

wind power energy is unnecessary because the uncertainty

is cramped by the low committed wind energy. Therefore,

non-wind generation will be scheduled the most amount of

energy among these three kinds of scenarios. The dispatch

cost will increase and low efficiency is one of the challenges

in conservative wind forecasts based market. In addition,

wind curtailment cannot be avoided due to lack of down

regulation reserve, shown in Fig.6. In Fig.6, the red line

denotes the variation of wind outputs and up/down regulation

reserve represented by blue slash line. It is apparent that down

regulation is not enough in this situation and wind curtailment

will be mandated to execute.

Fig.7(b) shows the day-head non-wind price. This conser-

vative bidding strategy does not affect the reserve and energy

price a lot.

TABLE II
GENERATOR ENERGY BIDDING DATA

Fuel Consumption Function Start Up Shut down
Unit a b c Cost Cost

(MBtu) (MBtu/MWh) (MBtu/MWh2) ($) ($)

G1 650 15 0.017 3500 1

G2 650 50 0.008 3500 1

TABLE III
GENERATOR ANCILLARY SERVICE BIDDING DATA

Unit
bur cur bdr cdr

(MBtu/MWh) (MBtu/MWh2) (MBtu/MWh) (MBtu/MWh2)
G1 13 0.02 10 0.02

G2 35 0.05 12 0.02

TABLE IV
VARIATION PENALTY COEFFICIENTS FOR WIND UNITS

Penalty πE+ πE−
πUR+ πUR−

Value 0.1πE 2.6πE 0.7πE 1.2πE
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Fig. 6. Aggregated wind deviations and balancing reserve requirements under
conservative forecast scenario.

B. Optimal Bids in the Energy Market

In optimal energy bids scenario, additional up reserve for

wind power energy is required to manage the uncertainty.

Therefore the reserve requirement is 10% of total demands

plus 10% of the wind power capacity, shown in Fig.8. Dif-

ferent from conservative forecast scenario, the derivation of

wind power is pulled down paralleled due to no mandated

probability limitation applied before wind power bidding. This

raises the wind utilization rate, whereas it increases the up

reserve requirement especially with a higher wind penetration.

Due to the requirement of up reserve increases, the reserve

price also goes up shown in Fig.9(b).

C. Optimal Bids in the Proposed Combined Energy and

Reserve Market

In this combined market scenario, additional up reserve for

wind power energy is also needed to manage the uncertainty.

However, it can be filled by wind power reserve in most of time

with a proper penalty selection. The up reserve requirement is

10% of total demands plus 10% of the wind power capacity.

From Fig.9(b), the balancing UR requirement is about the

same as S1, but the wind production variations are reduced.

Part of the wind variations are now presented to the grid

as variable UR. As a result, the level of balancing DR can
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(a) Scheduling results.
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Fig. 7. S1 - Under conservative forecast scenario.
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Fig. 8. Aggregated wind deviations and balancing reserve requirements under
optimal energy bid scenario.
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Fig. 9. S2 - Under optimal energy bid scenario.

be reduced. The scheduling results is shown in Fig.10. This

bidding strategy accomplishes the objective that reduces wind

power committed generation without losing the benefits of

both wind producers and grids. The dispatch cost is the

lowest one, and the up reserve provided by non-wind unit

does not increase, therefore consolidating the efficiency. From

Fig.11, the reserve price actually goes down because of the

participation of wind power in reserve market. Undoubtedly,

the price cannot fall down too low to incentive wind producers

bid in reserve market.

V. CONCLUSION AND FUTURE WORK

It is apparent that all of the wind variations are directly

exposed to the grid in both S1 and S2, while in S3, part of

the wind power variation is diverted into the system reserve,
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Fig. 10. Aggregated wind deviations and balancing reserve requirements
under optimal energy and reserve bid scenario.
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Fig. 11. S3 - Under optimal energy and reserve bid scenario.

reducing the need for additional reserve. Besides, the result

indicates that this new mechanism requires less short-term

reserve, reduces expected dispatch costs and increases the

system security. Since this is a completely new area, lots of

problems need to be explained, such as follows: 1) real-time

analysis of this mechanism: the real time electricity price does

affect the bidding strategy and energy balance; 2) the optimal

penalty selection strategy: only limited analysis is given in this

paper and a more comprehensive analysis should be discussed;

3) the impact of different penetrations on the system operation.

More works need to be continued in the later paper.
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Abstract—System operation reserve requirement keeps going 

up in the past 3 years to compensate for the variation of wind 

power. This reduces the efficiency of thermal units by limiting 

their energy output. Superconducting magnetic energy storage 

(SMES) as a novel technology was proposed to provide up and 

down regulation reserve due to its fast response to charge and 

discharge. However, given the cost and utilization ratio of SMES, 

an optimal unit commitment (UC) with the integration of SMES 

is necessary. This paper modifies the traditional UC model into a 

chance-constrained stochastic problem to realize the optimal 

schedule objective. To solve this non-convex problem, a 

Branch/Bound (BB) Technique and Particle Swarm Optimization 

(PSO) algorithm is introduced, while the initialization of PSO is 

achieved by the simplex algorithms. Finally, a comparison 

between the deterministic UC and stochastic UC is given. The 

result indicates that the model in this paper offers independent 

system operators (ISO) more freedom to balance the system 

dispatch cost and reliability and it can successfully reduce the 

SMES costs.  

 
Index Terms—SMES, wind power, regulation reserve, unit 

commitment, chance constraint, branch and bound, PSO. 

I.  INTRODUCTION 

he installation of wind power plants has rapidly increased 

in many countries. Due to its uncertain and uncontrollable 

nature, wind power raises many difficulties for reliable 

operation. In order to maintain the reliability of a power 

system, one traditional way is to increase regulation and 

operating reserves dramatically against wind power 

fluctuations, and the other way is to curtail wind power 

entirely during peak hours. 

Superconducting Magnetic Energy Storage (SMES) 

systems is a good way to reduce the high regulation and 

operating reserves, for its fast response to charge and 

discharge. Moreover, recent research shows that SMES can 

bring more benefit than cost in small scale power systems [1]. 

Previous papers discussed the feasibility for coordinating 

SMES with thermal units in an Economic Dispatch problem, 

which is a static model without considering a time horizon [2]. 

The dynamic and stochastic unit commitment problem was 
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introduced in [3] for evaluating the penetration of large 

amounts of intermittent wind power, however, this model 

ignores the generation unit status. Probabilistic-based Security 

Constraint Unit Commitment problem was introduced in [4], 

but it requires scenario simulation and thus consumes a large 

amount of time. In [5], the probability distribution of wind 

was assumed to be a combination of Gaussian distribution and 

Laplace distribution, and Monte-Carlo simulation is applied to 

solve the chance-constrained problem, but it is still a scenario 

based method. In this paper, instead of the scenario-based 

stochastic method, chance constraints are introduced to 

determine both energy and ancillary service schedules. This 

will greatly reduce the computing complexity, and offers 

independent system operators (ISOs) more freedom to balance 

the system dispatch cost and reliability.  

Generally, the common methods to solve a UC problem can 

be divided into two categories, e.g. numerical optimization 

techniques and evolutionary programming techniques. The 

former contains dynamic programming, Lagrangian-relaxation 

methods, branch and bound methods, and mixed-integer 

programming [6-11]; the latter includes genetic algorithms, 

particle swarm optimization, simulated annealing, etc.[12-

14].To get a numerical solution, a convex prerequisite is 

mandated however it obviously cannot be satisfied for a 

chance constrained UC problem. In [18], a general Mixed 

Integer Linear Programming algorithm is introduced and is 

generally applied in many situations. However it is impossible 

to solve a chance-constraint problem with multiple probability 

distribution spaces, which is a non-convex model. In this 

paper, a combined method which processes the advantages of 

both numerical optimization techniques and evolutionary 

programming techniques is introduced. It is referred to as a 

branch/bound particle swarm optimization algorithm. To get a 

heuristic solution, a proper and feasible initialization and 

evolution strategy is required to improve convergence 

efficiency of algorithms. The branch and bound techniques 

provide a way to update the binary variables, and the particle 

swarm optimization solves the nonlinear problem in each step 

of the iteration. The initialization problem of PSO is solved by 

using basic initial variables which are frequently used in the 

simplex method.  

The paper is organized as follow: In section II the unit 

commitment problem with wind generation is formulated. In 

section III, the integration of branch/bound technique and PSO 

is discussed in detail. In section IV, three cases are studied and 

come to the conclusions that a chance constrained UC model 
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with SMES could compensate for the variability of wind 

power while reducing the dispatch cost. 

II.  PROBLEM FORMULATION 

Present practice is to consider day-ahead schedule (Unit 

Commitment) and real-time balancing (Optimal Power Flow) 

separately. This paper only focuses on the day-ahead UC 

problem and assumes that storage devices could provide a 

frequency regulation service. Compared with conventional 

high ramp reserves such as hydro, the response time of SMES 

are negligibly small.  

The unit commitment with wind generation and SMES 

could be formulated as an optimization problem (1)-(16). The 

objective is to schedule the thermal unit generation (PGi,t), 

spinning reserve (     
    

), up-frequency regulation (     
  ) and 

down-frequency regulation reserve (     
  ) with SMES up and 

down regulation reserve (          
  ,          

  ) at time t 

(t=1,2…T), so that the total energy, reserve, startup, and 

shutdown cost over time horizon T (usually one day, T=24) is 

minimized subject to generation and storage constraints: 
 

, , , , ,

1

, 1 , , , 1 , ,

1

, , ,

1

{ [ ( ) ( ) ( ) ( )]

min [(1 ) ( ) (1 ) ( )]
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
 

( 1 ) 

 

where at time t,       
    

      
        

        denote the committed 

output, spinning reserve, up regulation and down regulation of 

i
th 

thermal unit respectively,          
  and          

   are up and 

down regulation of the i
th

 SMES.      and         are binary 

variables; they have a value of 1if the i
th

 thermal unit or SMES 

is committed to provide energy/reserve at time t, and 0 

otherwise.    and     are the number of thermal units and 

SMESs respectively. Here the cost for wind generation is 

ignored. The cost for energy is assumed to be quadratic: 
2

, , ,( )E

Gi Gi t i Gi t i Gi t iC P a P b P c    ( 2 ) 

while the cost for reserves are assumed linear: 

, ,( )Spin Spin

Gi Gi t Gi Gi tC P C P  ( 3 ) 

, ,( )UR UR

Gi Gi t Gi Gi tC P C P  ( 4 ) 

, ,( )DR DR

Gi Gi t Gi Gi tC P C P  ( 5 ) 

, ,( )UR UR

SMESi SMESi t SMESi SMESi tC R C R  ( 6 ) 

, ,( )DR DR

SMESi SMESi t SMESi SMESi tC R C R  ( 7 ) 

The costs for start-up and shut-down are assumed constant: 

,( )ST ST

Gi Gi t GiC P C  ( 8 ) 

,( )SD SD

Gi Gi t GiC P C  ( 9 ) 

In general all the costs would be convex, hence the objective 

function given      and           is convex. 

A.  Constraints Used in Traditional Wind UC Problem 

a) Power balance equations: 

, , , ,

1

GN
f

Gi t Gi t Wind t Load t

i

U P P P


   
( 10 ) 

where        is the forecasted demand at time t, and        
 

is 

the forecasted wind output at time t. Since single bus is 

considered, it is reasonable to assume there is only one wind 

farm. 

b) Generation limits 
max

, , , , 0Spin UR

Gi t Gi t Gi t Gi t GiP R R U P     ( 11 ) 

min

, , , 0DR

Gi t Gi Gi t Gi tU P P R    ( 12 ) 

where   
   and    

   are the maximum and minimum power 

for i
th

 thermal unit if it is committed at time t. It could be seen 

in the inequalities that if      is 0, then the energy and reserve 

allocation for the i
th

 are 0s. 

c) Spinning reserve limits: 

, ,

1

GN
Spin Spin

Gi t Gi t Sym

i

R U R


  ( 13 ) 

where    
     

is the system requirement spinning reserve, this 

value is calculated from the security analysis. 

d) Regulation limits for SMESs: 
arg

, , ,0 UR ch e

SMES i t SMES iR P   ( 14 ) 

arg

, , ,0 DR disch e

SMES i t SMES iR P   ( 15 ) 

where        
      

and        
         

are the maximum charge and 

discharge capability of i
th

 SMES. Here discharging is 

considered, even if it is costly, because without discharging 

there will be negative Locational Marginal Prices (LMPs) 

when the wind farm’s output is exceeding its committed 

output. 

e) Ramp rate limits for thermal units: 
,max ,max

, , 1

Down Up

Gi Gi t Gi t GiRR P P RR     ( 16 ) 

This constraint holds if both      and        equal 1. 

B. Constraints for Scenarios 

At day-ahead schedule, the forecast of wind is not accurate, 

and sometimes the error is really large. So it is required that 

the regulation reserves can compensate the variation of wind, 

for each scenario, this is really time-consuming: 

a) Power balance equations: 

, , , , , ,

1 1

G MN N
s s s

Gi t Gi t SMESi t SMESi t Wind t Load t

i i

U P U P P P
 

     
( 17 ) 

where       
 is the scenario wind output at time t. 

b) Generation limits: 

, , , , , , , ,( ) ( )DR s UR

Gi t Gi t Gi t Gi t Gi t Gi t Gi t Gi tU P R U P U P R     ( 18 ) 

This constraint holds for both committed and non-committed 

generators. 

c) Generation ramp limits: 

, 1 , , 1

DR s UR

Gi t Gi Gi t Gi t GiP RR P P RR      ( 19 ) 

Again, this constraint holds if and only if both      and 

       equal 1. 

d) Regulation limits for SMESs: 

, , , ,

DR s UR

SMESi t SMESi t SMESi t SMESi tR U P R    ( 20 ) 

e) SMES capacity limits: 
0

min max

, ,0 , ,

1

t
s

SMES i SMESi SMESi t SMES i

t

E E P E


    ( 21 ) 
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For t0 =1,2,…T.        
   and        

   are the minimum and 

maximum storage capacity for i
th

 SMES.  

C. Chance Constraints for Scenarios 

The scenario-based model can be converted into a chance-

constrained model to reduce the computation time. All the 

derivations are on the basis of the following assumption, for a 

wind generator that is operating at Maximum Power Point 

Tracking (MPPT) mode, the output power is in range of 

[0,     
   ].  

First, equation (17) can be converted into: 

, , , , ,

1 1

G mN N
s s s

Gi t Gi t SMESi t SMESi t Load t Wind

i i

U P U P P P
 

     ( 22 ) 

In this equation, the right side is in the range [        

     
   ,        ]. Moreover, if the wind outputs follow a 

probability distribution pattern, then the wind output would 

fall in the range [         ,           ] for a probability 

of    .   
     is the cumulative distribution function (cdf) of 

the wind output. The left side of the equation is in the range 

of  ∑      
  

    ∑      
    

    ∑         
    

    ∑      
  

    ∑      
    

    

∑         
   

  
    Thus if the former range is contained by the 

latter one, then the scenario will not violate any limits for a 

probability of   . Given those special distribution functions 

which are generally adopted by ISOs, the chance constrained 

model can be further converted into a deterministic model: 

1

, , , , ,

1 1

( )
2
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UR UR f

Gi t Gi t SMESi t SMESi t Wind t t

i i
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(23) 
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(24) 

However, to solve regular chance-constrained problem, 

more than one distribution density function will be constructed 

to measure the constraints. In this paper, to better introduce 

the simplification and derivation, it is assumed that the 

probability of wind velocity follows a Weibull distribution. 

Generally, the wind power output is positively related to the 

wind velocity. It could be seen that as   increases, the up-

regulation reserve and down-regulation reserve requirements 

decrease, making the system more economic and more risky. 

    The inequalities are derived in the Appendix. Hence the 

constraints for scenarios could be transformed into constraints 

for conventional UC problem, so the final constraints for 

optimal operation are (2)-(16), (23)-(24) with objective 

function (1). The mathematical model is: 

min ( , )f x u  ( 25 ) 

s.t 

( , ) 0g x u   ( 26 ) 

( , ) 0h x u   ( 27 ) 

Where x consists of real-valued variables and u consists of 

binary variables. The optimization problem is a deterministic 

model within each special distribution space. 

III.  PROBLEM SOLUTION  

A. Particle Swarm Optimization Overview 

Particle Swarm Optimization (PSO) suggested by Kennedy 

and Eberhart in 1995 is based on the analogy of a swarm of 

bird or a school of fish [16]. In general, this algorithm is faster 

than genetic algorithm except for small scale systems. 

However, the PSO algorithm is only applicable for real valued 

variables, so Kennedy and Eberhart proposed Binary Particle 

Swarm Optimization (BPSO) [17] method. The structure of 

BPSO is similar to that of real-valued PSO except that the 

position of a particle is a binary one. In BPSO, instead of 

changing to a new position according to the speed of a particle, 

the particle would turn to 1 from 0 or 0 from 1 based on a 

probability which is positively related to the velocity of the 

particle: 

1

1

1
( )

1 exp( )

k

ij k

ij

S v
v






 

 
( 28 ) 

The value of 
1( )k

ijS v 
can be interpreted as a probability 

threshold. If a random number selected from a uniform 

distribution [0,1] is less than
1( )k

ijS v 
, then the position of the 

j
th

 element in the i
th

 particle at iteration k+1 is set to 1 and 

otherwise set to 0. Next the BPSO would be proved ineffective 

for this problem. 

B. Lemma 

Lemma: For each unit commitment combination 

u 
, ,{ } { }Gi t SMESi tU U  

The solution space x  from constraints would not intersect 

with another unit commitment combination, i.e., if a solution 

x  is feasible for 1u , then it cannot be feasible for 2u . 

For two different unit commitment combinations   ̃ ={       , 

i=1,2,…   } ⋃                        and  ̃ = {        , 

i=1,2,…   } ⋃                        , since they are not 

identical, there must be an i so that                or 

                     , thus in the solution space of case 1 and 2, 

there must be one thermal unit or SMES that is committed in 

the first situation and not committed in the second situation, 

and vice versa. For the case where the generator is committed, 

the output power should be larger than    
   , and for the case 

where the generator is not committed, the output power should 

be zero. Thus, the two solutions are not identical. 

Based on this lemma, it is apparent that the solution spaces 

for each unit commitment combination are not intersecting 

with each other. Hence, suppose BPSO is used, then there 

would be ( )
2 G MN N T possible combinations for the unit 

commitment, then the particle swarm has to enumerate 
( )

2 G MN N T non-intersecting spaces to find the minimum value, 

otherwise there is no guarantee that global minimum is 

achieved. The complexity of this technique would be 

dramatically reduced if there is an algorithm to determine only 

a fraction of the ( )
2 G MN N T spaces would contain the global 

optimal solution. In this paper, branch and bound technique is 

used in selecting solution spaces. 

C. Branch and Bound (BB)Technique: 

Relaxation provides an excellent way to solve the MIP 

problem. First of all, assume the binary variables  ̃are real-

valued variables in the range of [0, 1], and solve the problem 

by particle swarm optimization. The Branch and Bound 

algorithm generally alternates between two main steps: 
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branching, which is a recursive subdivision of the search space 

and bounding, which is the computation of lower and upper 

bounds for the global minimum of the objective function in a 

sub region of the search space. If all discrete variables take 

discrete values, then the algorithm is stopped, otherwise split 

the search space into half (branching) and add bounds for each 

spaces (bounding), and solve the two sub problems by PSO. 

D. Handling of Constraint Violation 

When PSO is implemented to solve the optimization 

problem with a convex objective function and non-convex 

constraints, the update of the particle would cause it to violate 

a constraint, thus making it a non-feasible solution. In the 

context of evolutionary optimization, four popular methods 

are generally used to handle constraints: the first is to preserve 

the feasibility of solutions, the second is differentiating 

between feasible and non-feasible solutions, the third one is a 

penalty function, and the last one is hybrid method. However, 

most of the methods need careful design of the parameters. 

In this paper, a fly-back mechanism is used to handle the 

constraints. When each particle is out of its feasible region, it 

has to fly back to the previous position. Experimental results 

indicate that this technique can locate better minima with 

fewer iterations and without penalty functions. The particle 

update rule is: 
11

11

( ) 0,

( ) 0,

t tt t
j i it i i

i t tt
j i ii

g x v jx v
x

g x v jx





   
 

  

 ( 29 ) 

After the fly back, the velocity of the particle would change 

at the next time step according to the different positions of 

local best particle and global best particle. The above 

mechanism could successfully handle inequality constraints. 

In order to handle equality constraints, simple decrease the 

dimension of the variables, so that the last thermal unit        

is determined by: 
1

, , , ,

1

G

G

N
f

GN t Load t Wind t Gj t

j

P P P P




    
( 30 ) 

E. Integrating BB and PSO 

In this paper, a hybrid of PSO with BB is proposed. At the 

start of the algorithm, the PSO is used to determine an optimal 

feasible solution by assuming  ̃is real-valued variables. This 

solution is taken as the global best solution Gbest. In 

alliterations, if an improvement is conducted in the global 

solution by PSO, the improved Gbest would be sent to BB 

module as a starting point. During a PSO search, the discrete 

variables  ̃are truncated to the nearest valid discrete points. 

The solutions would not exceed boundaries using the fly-back 

mechanism. 

F. Initialization of PSO by Simplex Method 

   ̃  ̃ is non-convex quadratic constraints when a multiple 

distribution space is proposed and introduced, thus 

traditionally, initialization of particles would require security 

examination. This is rather time consuming, since it is hard to 

find feasible solutions. In this paper, the initialization is 

achieved by a two-stage simplex method. Typically, first 

randomly initialize the binary variable ̃. If  ̃is given, then the 

non-convex quadratic constraints would turn into linear 

constraints, i.e. 

( ) 0ug x   ( 31 ) 

The constraints are dependent on  ̃which is randomized. 

Thus, the linear constraints could be rewritten as: 

uA x b  ( 32 ) 

The initialization of  ̃   that is subject to the constraint (32), 

could be achieved with artificial variables. To determine the 

initial feasible solution, augment the problem to include 

artificial variables ̃, and then solve this artificial problem: 

min1T y  ( 33 ) 

Subject to 

uA x y b   ( 34 ) 

The artificial problem is already in canonical form, with  ̃  

 ̃as its initial basic feasible solution. Since  ̃     is required, 

then this artificial problem has an apparent minimum solution 

at  ̃   , which yields an initial basic feasible solution to the 

original problem. This solution could be used to initialize one 

particle, since a basic feasible solution is a feasible solution. 

However, the artificial variable method could only provide 

one feasible initialization. To obtain more feasible solutions, 

simply choose different unit commitment combination  ̃ and 

derive one feasible solution from each combination. The 

overall diagram is shown in Fig.1. 

 
Set time t=1, ( ( ))f g t  

Randomize , Calculate initial feasible solutions from artificial variable problem, get ( , )x u

Initialize the velocity vector of each particle

Start a new PSO generation

Update Local best p(t) and global best g(t)

Truncate u to the nearest discrete values

( ( )) ( ( 1))f g t f g t 

Set ( )g t as a starting point for Branch and Bound

Use Branch and Bound to obtain a new solution 

* *( , ) ( ( ))f x u f g t

* *( ) ( , )g t x u

Update position and velocity for each particle

Check the feasibility of each particle and use fly back mechanism

Stopping criteria

Report global best particle

Yes

Yes

Yes

No

No

No

 
Fig. 1. Overall diagram for integration of branch/bound and PSO 
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IV.  CASE STUDY 

In this section, the proposed hybrid Branch/Bound and 

Particle Swarm Optimization method are tested on a single bus 

test system, which consists of three thermal units, a wind farm, 

and a SMES unit as show in Fig.2. Data for thermal generators 

can be found in Table I. The thermal generators’ energy 

bidding data is shown in Table II. The ancillary service 

bidding data for thermal generators can be found in Table III. 

The ancillary service bidding data for SMES can be found in 

Table IV. The hourly forecast for load and wind output is 

shown in Table V.  

SMES

 
Fig.2.System illustration with three thermal units, one wind farm and one 

SMES. 

 

Three cases are discussed in this paper: 

Case 1: Base case dispatch with         

Case 2: Base case dispatch with             

Case 3: Base case dispatch without SMESs 

And three scenarios are considered during peak hour: 

Scenario 1: wind output equals to wind forecast 

Scenario 2: wind output at maximum capability 

Scenario 3: wind output at minimum capability 
 

Table I 

GENERATOR DATA 

Unit 
Pmin 
(MW) 

Pmax 
(MW) 

Ramp Up 
(MW/h) 

Ramp Down 
(MW/h) 

Initial State 
at time 0 

G1 30 600 200 50 ON 

G2 30 600 200 20 OFF 

G3 20 400 200 50 OFF 
 

Table II 

GENERATOR ENERGY BIDDING DATA 

Unit Fuel Consumption Function Start 

up  

Cost  

Shut 

down 

Cost 

Fuel 

Price a 
(MBtu) 

b 
(MBtu/MWh) 

c 
(MBtu/MWh2) 

G1 176.9 13.5 0.04 1200 800 1.247 

G2 129.9 40.6 0.001 1000 500 1.246 

G3 137.4 17.6 0.005 1500 800 1.246 
 

Table III 

GENERATOR ANCILLARY SERVICE BIDDING DATA 

Unit Spin

GiC
 

($/MWh) 

UR

GiC
 

($/MWh) 

DR

GiC
 

($/MWh) 

G1 13.2 26.4 26.4 

G2 13.0 26.0 26.0 

G3 15.0 28.0 28.0 
 

Table IV 

SUPER MAGNETIC ENERGY STORAGE ANCILALRY SERVICE 
BIDDING DATA 

Unit UR

SMESiC
 

($/MWh) 

DR

SMESiC
 

($/MWh) 

argch e

SMESiP
 

(MW) 

argdisch e

SMESiP
 

(MW) 

SMES1 20 15 30 20 
 

Case 1: The hourly UC solution is calculated in Case 1 and 

the first 12 hours’ dispatching solution is shown in Tables VI. 

Table VI also contains the scheduling results of the spinning 

reserve and regulation reserve of thermal units and the 

regulation reserve of SMES as well. The total cost of dispatch 

is $271,280. The wind power output is assumed to be 

positively related to the wind velocity, which follows a 

Weibull distribution.  
Table V 

HOURLY LOAD FORECAST DATA 

Hour Forecast 
Load 

(MW) 

Forecast 
Wind 

(MW) 

Hour Forecast 
Load 

(MW) 

Forecast 
Wind 

(MW) 

1 200 8.2 13 750 59.0 

2 200 11.4 14 750 78.1 

3 250 66.9 15 700 44.9 

4 250 69.8 16 650 19.5 

5 250 55.4 17 500 3.7 

6 200 50.9 18 600 16.5 

7 350 4.6 19 600 72.2 

8 500 49.3 20 700 73.3 

9 600 45.6 21 650 65.3 

10 800 10.1 22 550 24.5 

11 800 24.8 23 450 49.9 

12 700 37.3 24 350 40.3 
 

Case 2: In comparison with Case 1, additional ancillary 

services are needed in Case 2 because of the increased 

reliability. The total cost is $276,290. 

Case 3: In comparison with Case 1, the generation at each 

thermal unit is decreased, so that they have sufficient 

regulation reserve for the variation of wind. Hence, the total 

cost for the system is increased to $276,330. 

It could be seen from the simulation that with the increase 

of reliability, the total cost for the system is also increased 

from $27,129 to $27,628. The model in this paper has already 

considered contingency analysis: the variation of wind is 

compensated by regulation reserve while the trips of 

generators are compensated by spinning reserve. 
Table VI 

PART OF CASE 1 DISPATCH RESULTS 

Hour 
G1 

(MW) 

Up 
Regulation 

Reserve 

(MW) 

Down 
Regulation 

Reserve 

(MW) 

G1 (Spin/Up 
Regulation/Down 

Regulation) 

(MW) 

1 95.7 2.6 24.0 20.5/2.1/23.4 

2 94.0 3.8 22.3 20.3/3.3/23.1 

3 91.2 21.7 4.1 20.3/21.7/3.8 

4 89.8 23.1 3.4 20.1/22.6/2.8 

5 96.9 18.2 7.7 20.4/18.0/7.8 

6 74.4 16.7 9.1 20.5/16.6/9.4 

7 172.3 1.1 25.1 20.0/1.6/24.4 

8 224.9 16.4 9.9 20.1/16.4/10.2 

9 276.7 14.6 10.8 19.9/15.1/11.4 

10 402.2 4.3 23.1 27.7/4.8/22.6 

11 391.9 11.0 18.0 24.8/11.3/18.0 

12 331.0 12.1 13.9 20.4/12.5/13.8 

V.  DISCUSSIONS AND CONCLUSIONS 

The common way to specify spinning reserve is that certain 

amounts of reserves are pre-specified. However, there is not a 

common what to specify regulation reserve since this is 

implemented by automatic generation control (AGC). If the 

system demand is exceeding the generation, then ISOs have to 

buy emergency power from interconnecting markets. 

Traditionally, regulation reserve does not have to be 

specified because the forecasting technique for demand brings 

few errors. However, with the penetration of wind and its 

inability to accurately forecast wind power, it is necessary to 
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decrease the generation of each thermal unit in order to 

compensate for the variation of wind, thus decreasing the 

efficiency of thermal units. With the development of Super 

Magnetic Energy Storage (SMES) devices, it is more and 

more economical to use the fast response SMES as regulation 

reserve. This paper proposes the operation model for a chance-

constrained unit commitment problem, and presents 

simulations to discuss the introduction of SMESs. 

Unit Commitment is a mixed integer non-convex quadratic 

programming problem, which is difficult to solve. In this 

paper, a hybrid branch/bound and particle swarm optimization 

is coordinated to solve this problem. The PSO algorithm 

solves the non-convex quadratic problem, while the branch 

and bound technique helps to choose the unit commitment 

combination. 

In the simulation part, three cases are presented to compare 

the cost and reliability of the system. Comparing Case 1 and 

Case 3, it is concluded that the introduction of SMESs makes 

the system more economic while maintaining its reliability. 

Comparing Case 1 and Case 2, it is concluded that the 

economy of the system makes the system more risky; 

however, under the three scenarios the system’s regulation 

reserve can still compensate for the variation of wind. 

VI.  APPENDIX 

Let A represent the event that the regulation reserve could 

compensate for wind variation at time t. Then  
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