
An Efficient Particle Swarm Optimizer for Multi-level Redundancy
Allocation Problem
Zai Wang, Ke Tang and Xin Yao

Abstract— Redundancy allocation problem (RAP) has at-
tracted much attention during the past thirty years due to
its wide and valuable applications to improve the reliability
in designing phase of various engineering systems. Up to now,
most simulated systems in these attempts have focused on single-
level systems whereas real world engineering systems always
contain multiple levels where the entire system at the highest
level, components at the lowest level, and subsystems locate at
levels in between. Thus, it is desirable to study the redundancy
allocation problem on multi-level systems, which is referred to
as multi-level redundancy allocation problem (MLRAP). Now
there are only two approaches to tackle with the MLRAP,
however, when the complexity of MLRAP increases (i.e., the
infeasible solution space becomes very small, or the employed
simulation system becomes very large), both approaches cannot
work well. In this paper, we proposed an efficient particle swarm
optimizer (ePSO) to address the MLRAP on the basis of the
hierarchical genotype representation. The ePSO is comprised
of a new version of classical particle swarm optimizer which
is tailored to MLRAP, a novel constraint-handling method
and a problem-specific infeasible-solution-repairing technique.
The experimental results demonstrated that ePSO significantly
outperformed the latest two approaches on a new complex
multi-level system.

ACRONYMS

RAP Redundancy Allocation Problem
MLRAP Multi-Level Redundancy Allocation Problem
PSO Particle Swarm Optimization
MA Memetic Algorithm
HGA Hierarchical Genetic Algorithm

NOTATIONS

Rsys the reliability of a system
Csys the cost of a system
Ui the ith unit, where a unit can refer to a system, a

subsystem or a component
Ui,m the mth child unit of Ui

Ri the reliability of Ui

Ci the cost of Ui

xi the redundancy of Ui

x a set of design variables xi

R(x) the reliability of a system or subsystem defined by
design variables x

The authors are with the Nature Inspired Computation and Applications
Laboratory, the School of Computer Science and Technology, Univer-
sity of Science and Technology of China, Hefei, Anhui 230027, China.
Xin Yao is also with CERCIA, the School of Computer Science, Uni-
versity of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (emails:
wangzai@mail.ustc.edu.cn, ketang@ustc.edu.cn, x.yao@cs.bham.ac.uk).

Corresponding author: Ke Tang (Phone: +86–551–3600754).

C(x) the cost of a system or subsystem defined by design
variables x

λi,m the additional cost parameter of the mth child unit
of Ui, which is at the second lowest level of the
system

ni the number of child units of Ui

U j
i,m the jth redundant unit of mth child unit of Ui

Rj
i,m the reliability of U j

i,m

Cj
i,m the cost of U j

i,m

xi,m the redundancy of Ui,m

I. INTRODUCTION

Redundancy allocation problem(RAP) is one of the most
important reliability optimization problems regarding im-
proving the reliability during the designing phase of real-
world systems, such as electrical systems, mechanical sys-
tem, software systems, etc [1], [2]. For now, the most com-
monly studied configurations of RAP are single-level sys-
tems, including the parallel-series systems, k-out-of-n:G(F)
systems, general network systems and so on [1], [2]. How-
ever, in practice, the systems such as communication sys-
tems, computing systems, control systems and critical power
systems [3], not only contain multiple levels, where the entire
system is at the top level (system level), the components
are at the bottom level, and subsystems locate at levels in
between, but also allow allocating redundancy in each level.
Fig. 1 illustrates a schematic diagram of a four-level system.
An RAP with a multi-level system is referred to as a multi-
level redundancy allocation problem (MLRAP). Specifically,
the MLRAP investigated in this paper is formulated based
on multi-level serial systems with the following assumptions
[4]:

• Assumption 1: For each non-component unit, its child
units are serial and the number of them is fixed. (e.g.
when a real system based on the configuration shown
in Fig. 1 is constructed, every redundant unit U1 must
has three child units (U11, U12 and U13) and these three
child units are serial).

• Assumption 2: The redundancy can be allocated to the
units at every level.

• Assumption 3: The qualities (reliability, cost) of the
components are prescribed. If one unit is not a compo-
nent, reliability and cost of it are calculated based on
its serial child units.

RAP is very important in reliability optimization of various
systems. Also it is a well-known NP-hard problem [5]. Thus

U1

U2

U3

U11

U12

U13

Fig. 1. The structure of a tri-level system

it is desirable to develop efficient optimization methods to ad-
dress RAP. However, many classical mathematical methods
have failed in coping with nonconvexities and nonsmoothness
in RAP. As an alternative, the meta-heuristics, such as
evolutionary algorithms [6], [7], ant colony optimization [8],
artificial immune system [9], tabu search [10] and fuzzy
system [11] have been widely and successfully employed
in handling RAP. Comprehensive literature reviews on RAP
have been carried out in [1], [2]. From these reviews, we
can observe that the research on MLRAP lacks, which is
inconsistent with the practical importance of MLRAP. In
fact, now there have been only four papers on using meta-
heuristics to address MLRAP [12], [13], [4], [14]. In [12],
Levitin proposed an algorithm based on a genetic algorithm
framework with a universal generating function technique
for system survivability evaluation, to solve multi-level pro-
tection cost minimization problems subject to survivability
constraint. Later, Yun and Kim [13] proposed a restricted
multi-level redundancy allocation model, and addressed a
tri-level redundancy allocation problem using a customized
GA. However, to match the vector description of variables
in customized GA, they made an additional constraint that
the redundancy could be allocated to just one unit in a direct
line, which is defined as a set of units from the system-level
unit down to a component unit. In a direct line each unit
is a child of its previous unit except the system-level unit.
Though the targets of the work in [12], [13] are to cope
with the MLRAP, there are too strong assumptions about the
redundancy allocation model, which does not accord with
the reality. Recently, Ranjan et al. [4] proposed a new multi-
level redundancy allocation problem model and employed
a hierarchical genetic algorithm as the problem solver. In
[4], the redundancy allocation can be implemented onto
every level of the multi-level system. Then a simple GA
was adopted to tackle the problem, in which a solution was
represented by a hierarchical genotype. In [14], Wang et al.
proposed a memetic algorithm (MA) [15] for MLRAP. Based
on the hierarchical genotype representation similar to that
used in [4], they proposed the breadth-first-search crossover
and mutation operators together with a novel problem-

specific local search operator and incorporated them into the
MA. Experimental results showed their MA outperformed
the latest algorithms on two multi-level systems.

Though both algorithms in [4], [14] perform well on the
two benchmark multi-level systems, their effectiveness on
the MLRAP can still be improved significantly. First, the
redundancy of the high-level units of the solutions obtained
by these two algorithms are very low under the predefined
cost constraints, which means that the solution space is
not fully explored. Second, the two algorithms cannot work
on more larger multi-level systems (i.e., with more than 4
levels). To overcome the above two drawbacks, in this paper,
we propose an efficient particle swarm optimizer (ePSO) to
address MLRAP. As a new optimization technique, particle
swarm optimization (PSO) mimics a flock of birds which
communicate with each other as they fly to find foods [16].
PSO was reported to outperform the conventional GAs with
respect to solution quality, success rate and computational
efficiency [17], [18]. Unlike the conventional GAs which
are not really ergodic in practice due to multiple steps
required [19], PSO can efficiently handle a wide svariety
of real-world problems [20], [21], [22], [23]. Furthermore,
in [18], PSO was showed to generally outperform a kind of
MA as well. Therefore, we are going to devise a PSO for
MLRAP and expect its performance to be better than GAs
and MAs. In our work, based on the hierarchical genotype
representation of the variables employed in [4], we first tailor
a classic particle swarm optimizer to the problem, and then
incorporate both a novel constraint handling method and a
problem-specific infeasible-solution-repairing technique. To
evaluate the performance of our ePSO on complex system,
we further designed a five-level system (the largest is a four-
level system for now) and compared our ePSO with the
latest algorithms proposed in [4] and [14] on it. Experimental
results showed that our approach outperformed the latest
algorithms on the new employed system.

The rest of this paper is organized as follows. Section II
introduces the problem formulation of MLRAP. Section III
describes the performance degradation of existing approaches
on more difficult MLRAPs. Our proposed ePSO is presented
in Section IV, including the particle representation, the ini-
tialization of the population, the PSO operation designed for
MLRAP, the constraint handling method, and the infeasible-
solution-repairing operator. The simulation results and analy-
sis are given in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

The configuration for MLRAP here is a multi-level serial
system, which is comprised of multiple hierarchical levels.
The system and the components are at the topmost and
the lowest levels respectively, and subsystems are at the
intermediate level. The system, subsystems and components
are all referred to as units. Each unit except component has
some serial next lowest level units. This unit is called the
parent unit, and the lower level units are called child units.
Fig. 1 presents a general multi-level serial system. As shown

in this figure, the system unit containing 3 serial child units
(U1 to U3 at its next lowest level). This structure is replicated
to all of the units expect the component units.

On basic multi-level serial configurations, redundancy can
be allocated to the units at each level. Each unit except the
component can have any number of subordinate units, and
the relationships between these subordinate units may be in
serial, in parallel or mixture of these two. Fig. 2 describes a
sample of allocating redundancy on a bi-level serial system.
The top part in Fig. 2 is the basic configuration, where U1

is a unit at the system level and has two serial child units
U11 and U12 at the next lowest level (component level). The
middle part of Fig. 2 illustrates the redundancy allocation
on the basic configuration. U1

1 and U2
1 are two redundant

units of U1. Similarly, U11 and U12 have 3 and 1 redundant
units in parent unit U1

1 , and both have two redundant units in
parent unit U2

1 , respectively. The bottom part describes the
obtained system corresponding to the redundancy allocation
scheme presented in the middle part.

U1

U11 U12

Parent unit at

system level

Children-units of

U1 at the 2
nd

level

Allocate redundancy

U1
1 U1

2

U1
1

1 U1
2

1 U1
3

1 U1
1
2 U1

1
1 U1

2
1 U1

1
2 U1

2
2

Redundancy allocation

at parent-unit U1

The symbol means the

serial relationship

The symbol means the

parallel relationship
Usys

U1 U1

U11
U12

U11 U12

Redundant units of U11
Redundant units of U12

U11

U11

U11

U11

U11

U12

U12

U12

U1

U1

The interpretation

system of the above

redundancy allocation

Fig. 2. An example of redundancy allocation on a bi-level model

In a multi-level serial system, the reliability of the units at
the lowest level (i.e., components) are predefined. For each
unit at a higher level, its reliability can be calculated based on
its child units directly. Assume a unit Ui has ni child units,
and denote the redundancy of a child unit Ui,m as xi,m. The
reliability of Ui can be calculated with Eq. (1):

Ri =
ni∏

m=1

[1−
xi,m∏

j=1

(1−Rj
i,m)] (1)

where Rj
i,m is the reliability of the jth redundant unit of

Ui,m.
Using Eq. (1), the reliability of the units at the second

lowest level can be calculated on the basis of the components.
Then the reliability of the entire system can be calculated by
repeating this procedure. For example, the reliability of the
final system given in Fig. 2 is:

Rsys =

[
1−

(
1−

(
1−

3∏
j=1

(1−Rj
1,1)

)
(R1

1,2)

)

×
(

1−
(

1−
2∏

j=1

(1−Rj
1,1)

)

×
(

1−
2∏

j=1

(1−Rj
1,2)

))]
(2)

The cost of the system is another important issue in the
reliability optimization field. It is usually considered as the
constraint in the design phase of a system (i.e., the total
cost of a system should not exceed a predefined value). In a
traditional RAP, the cost of a system is simply the aggregate
of the cost of each component in the system. However, in
a multi-level system, additional costs need to be taken into
account to reflect the hierarchical structure. Specifically, such
additional cost is introduced in the second lowest level, and
the cost of a unit Ui in a multi-level serial system can thus
be calculated as:

Ci =





ni∑
m=1

xi,m∑
j=1

Cj
i,m, if Ui is not at the second lowest level

ni∑
m=1

xi,m∑
j=1

Cj
i,m + λi,m

xi,m , otherwise

(3)
where Cj

i,m is the cost of the jth redundant unit of the
mth child unit of Ui and λi,m is a constant predefined for
Ui,m. For example, the cost of the final system in Fig. 2 is

Csys =

(
3∑

j=1

Cj
1,1 + λ1,1

3 + C1
1,2 + λ1,2

)
+

(
2∑

j=1

Cj
1,1 + λ1,1

2 +
2∑

j=1

Cj
1,2 + λ1,2

2

) (4)

Let x be the variable of an MLRAP, consisting of all the
xi,m’s that state the redundancy of all the units in the system.
The MLRAP studied in this paper is formally defined as:

Maximize: Rsys = R(x)
s. t. Csys = C(x) ≤ C0

1 ≤ xi,m ≤ pi

(5)

where C0 is the maximum cost allowed and pi is the
predefined maximum redundancy of Ui.

III. PERFORMANCE DEGRADATION OF EXISTING
APPROACHES ON HARDER MLRAPS

For MLRAP, there are two latest approaches: the hier-
archical genetic algorithm (HGA) in [4], and the memetic
algorithm (MA) in [14]. The performance of HGA and
MA were evaluated on two multi-level systems (one with
three levels and the other with four levels). Though the
performance of HGA and MA are good on the two employed
systems, we further want to know if these two algorithms can
also work well on more complex MLRAPs. Because MLRAP
is a constraint problem, so we could lift the restriction of the
constraint to make the MLRAP more difficult. In our work,
the cost constraint values are set in a smaller region (from 50
to 150 with the adjacent value 10) on the four-level system
in [14]. The parameter settings are same as that in [14]. Each
algorithm ran 30 times. The successful rate (the times one
algorithm can find a feasible solution in 30 runs) of the two
algorithms were recorded in Table I.

From Table I, it can be observed that HGA and MA cannot
get the feasible solutions at most times in the 30 runs, which
implies that the searching ability of both algorithms is not
strong enough to reach the feasible solution space when
the cost constraint is very strict. Because the solution space
of the MLRAP is exponentially increased by the scale of
the employed systems, so we can deduce that when the
scale of the employed system become larger (more than
4 levels), HGA and MA may not work well within the
acceptable constraint region, thus it is desirable to find more
efficient approaches to tackle with MLRAPs. In our work,
we proposed an eSPO to cope with the MLRAPs. The
reason why the ePSO can solve the harder MLRAP has been
analyzed in Section I. We will describe the details of ePSO
in next section.

IV. OUR EFFICIENT PSO FOR MLRAP
A. Particle Swarm Optimization

In recent years, particle swarm optimization has been to
be an effective approach to solving complex optimization
problems. The PSO algorithm simulates the dynamics of
a population of particles in a D-dimensional search space.
Each particle represents a candidate solution to the optimiza-
tion problem. A particle’s flight is influenced by both the best
position it has found thus far and the best position the whole
population (or the neighborhood of this particle) has found
so far. In a population of size N , the ith particle’s position
is denoted as ~xi = (xi1, xi2, . . . , xiD), the best position it
has found is denoted as ~pi = (pi1, pi2, . . . , piD) (we call
it personal best position in this paper), the best position the
whole population (or the current particle’s neighborhood) has
found is denoted as ~pg = (pg1, pg2, . . . , pgD), and the rate to
change the position of this particle is called velocity and is
denoted as ~vi = (vi1, vi2, . . . , viD), where i = 1, 2, . . . , N .
Applying the constriction factor PSO [24], at each iteration
step t, the ith particle updates its dth dimension of velocity
according to Eq. 6 and position in the search space according
to Eq. 7 as follows:

vid(t) = χ(vid(t− 1) + c1r1(pid

− xid(t− 1)) + c2r2(pgd − xid(t− 1))) (6)

xid(t) = xid(t− 1) + vid(t), (7)

where

χ =
2

|2− c−√c2 − 4c| , c = c1 + c2, c > 4.0. (8)

The constriction factor χ provides a damping effect on a
particle’s velocity and ensures the particle will converge over
time. c1 and c2 are constants, typically 2.05, and thus, χ =
0.729844 according to Eq. 8. r1 and r2 are random numbers
uniformly distributed in [0, 1]. Moreover, the velocity ~vi can
be constricted within the range [−VMAX ,+VMAX]. In this
way, the likelihood of a particle’s flying out the search space
is reduced. The value of ±VMAX is usually set to be the
lower and upper bounds of the allowed search ranges as
suggested in [16].

B. Particle Representation

The PSO described above is usually used to optimize
continuous problems. Since MLRAP is set in a search space
featuring discrete distinctions between variables, in order to
address it, some modifications must be made to the conven-
tional PSO. For simplicity, we did not use the discrete PSO
developed by Kennedy and Eberhart [25], in which a particle
has its position to be represented by a binary variable, and its
velocity to be the probability vector deducing the chance of
taking the value one of each corresponding bit. Instead, we
kept using the conventional PSO to operate on the real values.
When evaluating a particle, we only considered the integer
rounded by the real value. Based on the above modification,
we propose an efficient PSO for MLRAP. In the next, we first
introduce the designed particle representation for MLRAP.
Then we present the initialization of the population. Finally,
we describe the PSO operation for MLRAP based on our
particle representation. Since the MLRAP is an optimization
problem under a certain constraint, we will also present our
constraint handling method and the proposed repair operator
which is only applied to infeasible particles.

Conventional PSO usually uses vector genotype structures.
However, for MLRAP, the decision variables have different
lengths, since the redundancy can be allocated to each unit
at each level. Therefore, the vector genotype representation
is not suitable for MLRAP. To conform to the hierarchical
relationship among the system, subsystems and components
in the multi-level redundancy allocation model, the hier-
archical genotype coding method proposed in [4] is the
proper choice. The genotype coding representation used in
[4] is an improvement of the coding method proposed in
[26]. Based on this coding method, we can express every
possible combination of multi-level redundancy allocation on
the basic multi-level configurations.

TABLE I
THE PERFORMANCE OF HGA AND MA FOR MLRAP WITH SMALL CONSTRAINT VALUES ON THE FOUR-LEVEL SYSTEM EMPLOYED IN [14]

Cost constraint value 50 60 70 80 90 100 110 120 130 140 150
HGA 0 0 0 1 3 3 3 4 6 4 3
MA 0 0 0 0 3 2 2 6 4 7 4

In this paper, the hierarchical genotype representation in
[4] was employed as the particle representation. Furthermore,
in order to facilitate the conventional PSO operation, two
additional parameters, velocity vi and the real value rki

cor-
responding to the design variable ki (the redundancy to each
unit Ui), were incorporated into the solution representation.
Hence, conventional PSO operation can be applied to vi and
rki . Fitness evaluation is based on ki which can be obtained
by rounding rki . The detailed description of the hierarchical
representation can be observed in [4].

Fig. 3 illustrates an example of the hierarchical represen-
tation scheme on a tri-level serial system. The basic structure
of the system is given in Fig. 5(a). A system obtained
after redundancy allocation is shown in Fig. 5(b), and is
represented in the hierarchical structure in Fig. 5(c). For each
unit in the figure, three types of variables are given in the
box associated with it. Here, k stands for the redundancy
allocated to it and n stands for the number of its child
units. v is the velocity of each unit, and rk is the real value
corresponding to the design variable k. A variable in the
form of xe

i,m represents the redundancy allocated to the mth
child unit of the eth redundant unit of Ui. In other words,
the variables xe

i,m’s are to be optimized in an MLRAP. Since
the units at the lowest level (i.e., the component level) have
no child unit, only the redundancy allocated to themselves
are given.

C. Initial Population

A particle in the initial population is a hierarchical geno-
type tree representing a case of redundancy allocation on the
basic multi-level configuration. The process of initializing a
particle is also hierarchical. First we initialize the node at the
highest level of the hierarchical genotype tree by randomly
generating niki integers for x values, so we can get the
redundancy (ki) of its child units at the lower level, and then
we generate the x values of these child units. The value of
rki is made the same as ki, and the value of vi is randomly
generated from the range [−VMAX , VMAX], where VMAX

is set to be the distance from the lower bound to the upper
bound of the allowed search range [16]. This procedure is
repeated until the lowest level of the hierarchical tree is
reached.

D. PSO Operation for MLRAP

We used the gbest topology in the proposed PSO. Accord-
ing to Eq. 6, the velocity of a particle is updated based on
the difference between personal best position and global best
position. Given the particle representation described above,

U1

U11 U12

U111 U121

U13

U112 U122 U131

U111

U111

U112

U111 U112

U132

U121 U122

U121 U122

U131

U132

U132

U131 U132

U1

(a)

U12

U13

U1

U11 U11 U12 U13 U13

U111
U112 U111 U112 U121 U122 U131 U132 U131 U132

(b)

(c)

U11

U13
U11

1
1

sys
x

n k
n k

1

12
1x

1

13
2x

1

11
2x

1

111
2x

1

112
1x

n k2

111
1x

2

112
1x

n k1

121
2x

1

122
2x

1

131
1x

1

132
2x

n k2

131
1x

2

132
1x

k k k k k k k k k k
Fig. 3. An example of the hierarchical representation scheme on a tri-level
serial system

we propose to update velocities of a particle’s nodes in
breadth-first order. The details are given below.

When a particle is to be updated, each node of it is checked
against the corresponding nodes of the personal best particle
and the global best particle. When a node of this particle is
being checked, it is marked as “visited”. If the corresponding
values of the three kis are the same, the checking procedure
is applied to the next unvisited node according to the breadth-
first order. Otherwise, the values of vi and rki

are updated
according to Eq. 6 and Eq. 7, and the value of ki is obtained
by rounding rki . Based on the new value of ki, there are two
situations: (a) When the new value of ki is same as old one,
the parameters of this node including those of its subtree
remain unchanged. (b) When the new value of ki is different
from the old one, the subtree of this node is reconstructed
accordingly. The above checking and updating procedure is

then applied to every other unvisited nodes in breadth-first
order.

E. Constraint Handling

As shown in Section II, the multi-level redundancy al-
location problem is a constrained problem. The ability of
handling constraints is one of the most important issues,
which means that it is critical to guide the search around
the feasible region. In literature, there are many useful con-
straints handling methods such as penalization techniques, re-
pair techniques, separation techniques, and hybrid techniques
[27], [28]. In our work, we conditionally employed a penalty
function proposed by Gen and Cheng [27]. Concretely, the
fitness function, f(x), is mathematically expressed as

f(x) =





R(x)× p(x),
if C(x) ≤ (1 + α)× Cost Constraint V alue

Cost Constraint V alue− C(x), otherwise
(9)

where R(x), p(x), C(x) and x are the system reliability,
penalty function, cost function and a set of design variables
respectively. The parameter α is used to control the pressure
of the penalty on the population and its allowed value is
within the range [0, 1). Since some particles which only
slightly violate the constraints may have potentials to fly into
the promising area of the search space, we protect them via
controlling the value of α. When α = 0, the penalty function
is the same as that proposed by Gen and Cheng [27].

F. Infeasible-solution-repairing Operator

As described above, some infeasible particles may have
potentials to fly into the promising area of the search space,
so at each generation, we applied a repairing operator to
every infeasible particle before evaluating it according to
Eq. 9. We describe the process of the repairing to an
infeasible particle as follows.

We check every node of an infeasible particle from the top
level to the bottom level. On each level, we repair the node
having the highest value of ki. If there are several nodes
having the same highest values of kis, we randomly select
one to repair. We decrease the value of its ki by one and
reconstruct its subtree according to the new value of ki. If
the redundancy of a node (i.e. ki) is equal to 1, it is marked
as “checked”. This process is repeating from the top level to
the bottom level until any of the two conditions listed below
is satisfied.
• A repair of a node makes the particle feasible.
• There are no unchecked nodes.

Note that the repairing operator may not necessarily pull
an infeasible particle back into the feasible region, and it
sometimes just pulls the particle back near the boundary
between feasible and infeasible regions. At the same time,
a particle that has been pulled back into the feasible region
may fly into the infeasible region again. These features can
make particles extensively search the areas near the boundary

between feasible and infeasible regions, which is good for
finding more optimal solutions.

G. Framework of the Algorithm ePSO for MLRAP

The algorithm ePSO for MLRAP works under the frame-
work of the conventional PSO. It starts by initializing a
swarm of hierarchical tree-based particles. At each iteration,
all particles are evaluated according to Eq. 9, and then each
particle’s personal best position and the global best position
of the swarm are updated. Based on the new information
of the updated best positions, each particle’s parameters are
updated according to Eq. 6 and Eq. 7. Finally, the repairing
operator is applied to every infeasible particle. The details of
ePSO for MLRAP are shown in Algorithm 1, where tmax is
the maximal allowed number of generations.

1: Initialize a swarm of particles based on the hierarchical
tree-based genotype representation.

2: while t < tmax do
3: Evaluate particles according to Eq. 9.
4: Update particles’ personal best positions and the

global best position of the swarm.
5: Update particles’ parameters according to Eq. 6 and

Eq. 7.
6: Apply the repairing operator to infeasible particles.
7: end while

Algorithm 1: The pseudo-code of ePSO for MLRAP

V. EMPIRICAL STUDIES

In this section, the performance of ePSO was evaluated
on a new employed five-level redundancy allocation exam-
ple. The results were compared with two latest algorithms,
namely HGA in [4] and MA in [14]. The results indicate
that ePSO significantly outperforms the two algorithms on
complex systems.

A. Brief Descriptions of Studied Five-level Redundancy Al-
location Problem

In our work, ePSO was evaluated on a new employed five-
level redundancy allocation benchmark system. This problem
is called Problem-A. The basic configuration of Problem-
A is shown in Fig. 4, respectively. For each problem, the
redundancy allocated to each unit is between one and five.
The search space is huge, and the experimental design and
results will be shown in the next two subsections.

B. Experimental Design of Problem-A

In our study, HGA, MA and ePSO were employed to
solve Problem-A. For all the three algorithms, the maximum
generation was 500. In HGA and MA, the population size
was set to 100, crossover and mutation rate values were
set to be 0.8 and 0.05, respectively. For MA, the number
of child generated by breadth-first crossover and mutation

U1

U111

U11

U1112

U11122

U1111

U11112U11111

U112

U1122

U11222U11221

U1121

U11212U11211

U121

U12

U1212

U12122U12121

U1211

U12112U12111

U122

U1222

U12222U12221

U1221

U12212U12211U11121

Fig. 4. The basic multi-level configuration of Problem-A

were 50 and 10, respectively. In our ePSO, the number of
particles were set to be 50, the velocity was allowed within
the range [−VMAX , VMAX], where VMAX was set to be 4
(i.e. the difference between the upper and the lower bounds
[16]). Other PSO parameters (i.e. c1, c2 and χ) were set to be
the same values as described in the Section III. The control
parameter α of the penalty function was set to 0.3. The
experiments were designed so as to investigate the following
three issues.

1) A Single Case Study: To this point, the cost constraint
value (C0) was fixed to be 1500, and the input data of
the basic system of Problem-A is shown in Table II. To
observe the convergence of the optimal solutions obtained
by the three algorithms, we ran all algorithms with the
same set of initial population. 500 generations were allowed
for each algorithm and the best solution obtained in each
generation was recorded. In our experiment, we find that
HGA and MA cannot work under this cost constraint, we
just recorded the best solutions obtained by ePSO in each
generation, and presented in Fig. 5, where x-axis represents
the number of generations, and y-axis represents the highest
system reliability obtained in each generation. Fig. 5 tells us
that our ePSO not only can work on this problem, but also
offers a good solution for the designers.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation Number

R
el

ia
bi

lit
y

ePSO

Fig. 5. The convergence of ePSO on Problem-A

2) Performance Over Different Constraint Values: To
assess the influence of cost constraints on Problem-A, we

TABLE II
THE INPUT DATA OF THE BASIC MULTI-LEVEL SYSTEM FOR Problem-A

Problem-A
Unit Reliability Cost λ
U11111 0.60 5 2
U11112 0.65 4 2
U11121 0.50 5 3
U11122 0.65 3 2
U11211 0.70 6 2
U11212 0.60 5 2
U11221 0.65 4 3
U11222 0.60 5 3
U12111 0.60 4 2
U12112 0.65 3 2
U12121 0.55 5 3
U12122 0.65 6 2
U12211 0.65 6 2
U12212 0.60 5 2
U12221 0.65 4 2
U12222 0.65 5 3

TABLE III
BEST SOLUTIONS OBTAINED BY HGA, MA AND EPSO WITH DIFFERENT

CONSTRAINT VALUES ON Problem-A (THE BEST RESULT IS EMPHASIZED

IN BOLDFACE, ’*’ MEANS THAT THE SOLUTION IS NOT A FEASIBLE

SOLUTION)

Problem-A

Cost HGA MA ePSO

Reliability Cost Reliability Cost Reliability CostConstraint
500 0.990431* 3493* 0.994873* 3618* 0.441363 498
600 0.996017* 5432* 0.990432* 3843* 0.568023 598
700 0.994382* 4893* 0.995494* 3334* 0.654334 685
800 0.997439* 4388* 0.994329* 4339* 0.716695 700
900 0.994343* 3552* 0.997438* 5342* 0.823558 798

1000 0.998933* 3932* 0.999032* 4449* 0.928021 999
1100 0.993096* 3843* 0.99743* 5003* 0.927118 1100
1200 0.996438* 3543* 0.994321* 5480* 0.950805 1199
1300 0.994393* 3753* 0.998549* 4839* 0.950543 1300
1400 0.999032* 6032* 0.997899* 4858* 0.969083 1395
1500 0.994332* 4324* 0.998931* 3954* 0.973356 1500
1600 0.997438* 2988* 0.997332* 3332* 0.975745 1593
1700 0.998439* 3694* 0.998439* 5099* 0.98549 1698
1800 0.996643* 3211* 0.997438* 4873* 0.990503 1800
1900 0.998329* 3593* 0.994822* 3289* 0.9914 1900
2000 0.999322* 5432* 0.995342* 2998* 0.993184 1999
2100 0.998432* 3732* 0.998329* 3849* 0.995652 2099
2200 0.998432* 3192* 0.996481* 4390* 0.997251 2196
2300 0.990329* 4921* 0.992314* 3698* 0.99769 2298
2400 0.999423* 5321* 0.990439* 3437* 0.999477 2391

varied the cost constraint values from 500 to 2400, with
20 values and the difference between two adjacent values
was set to 100. Other input data for Problem-A were kept
fixed. For each cost constraint value, we ran all algorithms
30 times and selected the best solution as the final solution.
The obtained final solutions of the 20 cases are shown in
Table III.

Furthermore, with the purpose to observe the statistical
results obtained by the three algorithms, we calculated the
means and variances of the reliability values of the thirty
runs under each case study, which are shown in Table IV.

From Table III and Table IV, we find that ePSO obtained
better or the same solutions compared with the other two
algorithms under all the cost constraint values, which means
that ePSO can offer reliable systems to complex system de-

TABLE IV
STATISTICAL RESULTS OBTAINED BY HGA, MA AND EPSO UNDER

DIFFERENT CONSTRAINT VALUES ON Problem-A (THE BEST MEAN

RESULT IS EMPHASIZED IN BOLDFACE),’–’ MEANS THAT THE

SOLUTIONS OF THIS ALGORITHM ARE INFEASIBLE, AND THE

STATISTICAL RESULTS OF THESE INFEASIBLE SOLUTIONS ARE

MEANINGLESS.

Problem-A
Cost HGA MA ePSO

Constraint Mean Variance Mean Variance Mean Variance
500 – – – – 0.322608 1.57e-002
600 – – – – 0.43065 2.40e-002
700 – – – – 0.53654 2.05e-002
800 – – – – 0.670659 2.46e-002
900 – – – – 0.751346 1.91e-002
1000 – – – – 0.854941 2.64e-003
1100 – – – – 0.883308 7.70e-003
1200 – – – – 0.936425 5.65e-004
1300 – – – – 0.951189 3.62e-004
1400 – – – – 0.96081 2.30e-004
1500 – – – – 0.971923 2.45e-004
1600 – – – – 0.976328 7.93e-005
1700 – – – – 0.981693 5.71e-005
1800 – – – – 0.987784 3.78e-005
1900 – – – – 0.990569 1.84e-005
2000 – – – – 0.991662 1.54e-006
2100 – – – – 0.99378 4.31e-006
2200 – – – – 0.9959 2.20e-006
2300 – – – – 0.996743 5.59e-006
2400 – – – – 0.998217 2.15e-006

signers. Also, from the statistical results shown in Table IV,
it can be observed that ePSO performed significantly better
than the other two algorithms in all the cases.

3) Comparison of Three Algorithms Using Different Sys-
tem Parameters: To examine the robustness of ePSO on
Problem-A, we varied the component unit reliability and
kept other input data unchanged in basic multi-level system.
For each component unit, the reliability value was randomly
selected from four choices (0.80, 0.85, 0.90, 0.95). We ran-
domly utilized ten cases. For each case study, we ran all the
three algorithms for 30 times and selected the best solutions,
which are shown in Table V. We also did the nonparametric
Wilcoxon rank sum tests to do statistical analysis, and the
results are shown in Table VI. From Table V and Table VI,
we can observe that the solutions obtained by ePSO are better
than solutions obtained by HGA and MA, i.e., our ePSO is
the most robust within the three algorithms.

VI. CONCLUSIONS

In literature, the RAP has been intensively investigated on
single-level system, while the practical systems are usually
with multiple levels. However, only limited studies have been
conducted in this scenario. In this paper, the redundancy
allocation problems for systems with multiple levels were
investigated, and an efficient PSO was proposed to cope
with this type of problems. In our ePSO, we tailored a kind
of classic PSO to the MLRAP based on the hierarchical
genotype representation [4], proposed a controllable con-
straint handling method and an infeasible-solution-repairing
operator only applied to infeasible particles. Based upon our
experimental studies on two examples, two main conclusions
can be drawn. First, ePSO is capable of achieving better

TABLE V
BEST SOLUTIONS OBTAINED BY HGA, MA AND EPSO WITH DIFFERENT

INPUT DATA ON Problem-A (THE BEST RESULT IS EMPHASIZED IN

BOLDFACE, ’*’ MEANS THAT THE ALGORITHM CANNOT GET A

FEASIBLE SOLUTION)

Problem-A
Cost HGA MA ePSO

Constraint Reliability Cost Reliability Cost Reliability Cost

1 * * * * 0.968345 1495
2 * * * * 0.979798 1497
3 * * * * 0.939239 1491
4 * * * * 0.973383 1497
5 * * * * 0.95953 1499
6 * * * * 0.973331 1499
7 * * * * 0.966794 1498
8 * * * * 0.994318 1495
9 * * * * 0.925553 1498

10 * * * * 0.968148 1591

TABLE VI
STATISTICAL RESULTS OBTAINED BY HGA, MA AND EPSO WITH

DIFFERENT INPUT DATA ON Problem-A (THE BEST MEAN RESULT IS

EMPHASIZED IN BOLDFACE),’–’ MEANS THAT THE SOLUTIONS OF THIS

ALGORITHM ARE INFEASIBLE, AND THE STATISTICAL RESULTS OF

THESE INFEASIBLE SOLUTIONS ARE MEANINGLESS.

Problem-A
Cost HGA MA ePSO

Constraint Mean Variance Mean Variance Mean Variance
1 – – – – 0.958548 2.35e-3
2 – – – – 0.959903 4.86e-3
3 – – – – 0.92555 5.44e-3
4 – – – – 0.965802 3.65e-3
5 – – – – 0.950022 2.77e-3
6 – – – – 0.967373 3.81e-3
7 – – – – 0.959549 5.37e-3
8 – – – – 0.988382 4.66e-3
9 – – – – 0.913482 3.84e-3
10 – – – – 0.960116 4.85e-3

solutions than the state-of-the-art algorithms. ePSO is a
very promising approach to MLRAP and deserves more
in-depth investigation. Second, the robustness of ePSO is
good, according to the experimental studies on MLRAP with
different input data.

Two issues deserve further discussion and investigation.
First, in experimental study, we only considered systems with
hierarchical serial structures. However, changing the structure
of system will result in different reliability and cost functions
of the corresponding optimization problem. Since our ePSO
has been shown to be effective on this hierarchical serial
structure, we plan to extend it to hierarchical systems with
other types of structures, such as hierarchical parallel-serial
structure and hierarchical networks. Second, the formulated
multi-level redundancy allocation problem is just a single-
objective problem with the only goal to maximize the sys-
tem reliability, while the designing cost is considered as a
constraint. However, as the size of the systems kept growing
in the past decades, especially for multi-level systems, it is
unrealistic to overlook either the reliability or the designing
cost. Unfortunately, given a budget of redundancy degree,
more designing cost is usually inevitable if we want to
improve the reliability of the system. Hence, it is impossible

that a single solution is optimal in terms of both reliability
and designing cost. Instead, a multi-objective problem can
be formulated, then a tradeoff between the system reliability
and designing cost can be obtained through the problem-
solving process of these multi-objective problems. We will
investigate these two issues in our future work.

ACKNOWLEDGEMENT

This work was supported by IEEE Walter Karplus Summer
Research Grant, an EPSRC grant (No. EP/D052785/1) on
“SEBASE: Software Engineering By Automated SEarch”, a
National Natural Science Foundation of China grant (No.
U0835002), and the Fund for International Joint Research
Program of Anhui Science & Technology Department (No.
08080703016).

REFERENCES

[1] W. Kuo and V. Prasad, “An Annotated Overview of System-reliability
Optimization,” IEEE Transactions on Reliability, vol. 49, no. 2, pp.
176–187, 2000.

[2] W. Kuo and R. Wang, “Recent Advances in Optimal Reliability
Allocation,” IEEE Transactions on Systems, Man, and Cybernetics–
Part A: Systems and Humans, vol. 37, no. 2, pp. 143–156, 2007.

[3] W. Wang, N. J. Loman, and P. Vassiliou, “Reliability Importance of
Components in a Complex System,” Los Angeles, California, USA,
January 26-29, 2004, pp. 6–11.

[4] K. Ranjan, K. Izui, M. Yoshimura, and N. Shinji, “Multilevel Re-
dundancy Allocation Optimization Using Hierarchical Genetic Algo-
rithm,” IEEE Transactions on Reliability, vol. 57, no. 4, pp. 650–661,
2008.

[5] M. S. Chen, “On the Computational Complexity of Reliability Redun-
dancy Allocation in a Series System,” Operations Research Letters,
vol. 11, no. 5, pp. 309–315, 1992.

[6] D. W. Coit and A. E. Smith, “Reliability Optimization of Series-
Parallel Systems Using a Genetic Algorithm,” IEEE Transactions on
Reliability, vol. 45, no. 2, pp. 254–260, 1996.

[7] ——, “Genetic Algorithm to Maximize a Lowerbound for System
Time-to-failure with Uncertain Component Weibull Parameters,” Com-
puters and Industrial Engineering, vol. 41, no. 4, pp. 423–440, 2002.

[8] Y. C. Liang and A. E. Smith, “An Ant Colony Optimization Algo-
rithm for the Redundancy Allocation Problem,” IEEE Transactions on
Reliability, vol. 53, no. 3, pp. 417–423, 2004.

[9] T. C. Chen, “IAs Based Approach for Reliability Redundancy Allo-
cation Problems,” Applied Mathematics and Computation, vol. 182,
no. 2, pp. 1556–1567, 2006.

[10] A. E. S. S. K. Konak and D. W. Coit, “Efficiently Solving the
Redundancy Allocation Problem Using Tabu Seach,” IIE Transactions,
vol. 35, no. 6, pp. 515–526, 2003.

[11] G. S. Mahapatra and T. K. Roy, “Fuzzy Multi-objective Mathematical
Programming on Rliability Optimization Model,” Applied Mathematics
and Computation, vol. 174, no. 1, pp. 643–659, 2006.

[12] G. Levitin, “Optimal Multilevel Protection in Serial-Parallel Systems,”
Reliability Engineering and System Safety, vol. 81, no. 1, pp. 93–102,
2003.

[13] W. Y. Yun and J. W. kim, “Multilevel Redundancy Optimization in
Series Systems,” Computers and Industrial Engineering, vol. 46, pp.
337–346, 2004.

[14] Z. Wang, K. Tang, and X. Yao, “A Memetic Algorithm to Multi-level
Reudandancy Allocation Problem,” Submited to IEEE Transcation on
Reliability, 2009.

[15] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithm,” Calteth Concurrent
Computation Program Report 826, CalTech, Pasadena, CA, 1989.

[16] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Fransisco,
CA, US: Morgan Kaufmann, 2001.

[17] O. D. W. R. Hassan, B. Cohanim and G. Venter, “A Comparison of
Particle Swarm Optimization and the Genetic Algorithm,” in Proceed-
ings of the 1st AIAA Multidisciplinary Design Optimization Specialist
Conference, 2005.

[18] T. H. E. Elbeltagi and D. Grierson, “Comparison among Five
Evolutionary-based Optimization Algorithms,” Advanced Engineering
Informatics, vol. 19, no. 1, pp. 43–53, 2005.

[19] R. C. Eberhart and Y. Shi, “Comparison between Genetic Algorithms
and Particle Swarm Optimization,” Lecture notes in computer science,
pp. 611–618, 1998.

[20] ——, “Particle Swarm Optimization: Developments, Applications and
Resources,” in Proceedings of the 2001 congress on evolutionary
computation, vol. 1. Piscataway, NJ, USA: IEEE, 2001, pp. 81–86.

[21] I. A. A. Salman and S. Al-Madani, “Particle Swarm Optimization
for Task Assignment Problem,” Microprocessors and Microsystems,
vol. 26, no. 8, pp. 363–371, 2002.

[22] P. S. S. Kannan, S. M. R. Slochanal and N. P. Padhy, “Application of
Particle Swarm Optimization Technique and Its Variants to Genera-
tion Expansion Planning Problem,” Electric Power Systems Research,
vol. 70, no. 3, pp. 203–210, 2004.

[23] S. M. J. H. Y. del Valle, G. K. Venayagamoorthy and R. G. Harley,
“Particle Swarm Optimization: Basic Concepts, Variants and Ap-
plications in Power Systems,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 2, pp. 171–195, 2008.

[24] M. Clerc and J. Kennedy, “The particle swarm – explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[25] J. Kennedy and R. C. Eberhart, “A Discrete Binary Version of the
Particle Swarm Algorithm,” in 1997 IEEE International Conference
on Systems, Man, and Cybernetics, ’Computational Cybernetics and
Simulation’., vol. 5, 1997.

[26] M. Yoshimura and K. Izui, “Smart Optimization of Machine Systems
Using Hierarchical Genotype Representations,” ASME Journal of
Mechanical Design, vol. 124, no. 3, pp. 373–384, 2002.

[27] M. Gen and R. Cheng, “A Survey of Penalty Technique in Genetic
Algorithms,” in Proceedings of the International Conference on Evo-
lutionary Computation, Japan, 1996, pp. 804–809.

[28] C. A. C. Coello, “Theoretical and Numerical Constraint-handling
Techniques Used with Evolutionary Algorithms: A Survey of the State
of the Art,” Comput Methods Appl Mech Eng, vol. 8, no. 2, pp. 1245–
1287, 2002.

