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Abstract—Microarray technique can monitor the expression
level of thousands of genes at the same time. With the recent
advances in microarray technology, the expression levels of
genes with respect to samples can be monitored synchronically
over a series of time points. Such three-dimensional microarray
data, termed gene-sample-time (GST) microarray data, are gene
expression matrices measured as a time-series. They have not
yet received considerable attention and analysis methods such
as classification algorithms, bio-marker selection or discovery
techniques, and clustering approaches, to name a few, need to
be devised specifically to tackle the complexity of GST datasets.
Applications of microarrays are in therapeutical, environmen-
tal, pharmaceutical, functional genomics, and clinical science
research. Non-negative information can benefit the analysis of
microarray data. This report investigates the classification and
gene selection performance of non-negative matrix factorization
(NMF) over gene-sample data. We also extends it to the higher-
order version for GST sample data. We have tested and compared
our approaches on real gene-sample and GST datasets. Exper-
iments show that NMF and the higher-order NMF can achieve
at least comparable performance.

I. INTRODUCTION

DNA microarray technique can monitor thousands of genes
in parallel, dramatically accelerate molecular biology experi-
ments and provide a huge amount of data to find co-regulated
genes, functions of genes, genetic networks, for instance.
There are two types of microarray data: gene-sample data sets,
which compile the expression levels of various genes over
a set of biological samples; and gene-time data sets, which
record the expression levels of various genes over a series
of time-points. Both types of data are represented by a two-
dimensional (2D) gene expression matrix.

Machine learning methods are used to analyze microarray
data. Analysis methods encompass feature extraction and clas-
sification in the application of disease prediction, gene selec-
tion to find discriminative genes and biomarkers, clustering in
the application of finding co-regulated gene patterns, statistical
methods to model gene regulatory networks. However, there
is a plethora of problems that arise in analyzing microarray
data. For instance, the measurements may contain noise due to
technical issues in the measuring process, and the expressions
of large number of genes are measured over a small number
of samples or time points. These problems, among many other
problems, substantially affect the performance of analysis
algorithms devised for microarray data.

Within the last few years in medical research, the expression
levels of genes with respect to biological samples have been
monitored synchronically over a series of time-points [2]
[1]. This corresponds to a three-dimensional (3D) data set,
termed gene-sample-time (GST) microarray data [3]; which
can be viewed as a collection of gene-sample data over a
series of time-points, or a collection of gene-time data across
some samples. GST data can be used to develop models for
diagnosing diseases much more precisely than with static mi-
croarray data, or to monitor dose or drug treatment responses
of patients over time in pharmacogenomics studies [4], or to
determine genes or samples patterns, or to find regulatory
pathways [3]. There are many problems associated with the
analysis of GST data, such as missing values, noise, small
number of sample and time points. Furthermore, unlike in two-
dimensional microarrays, a gene or sample in a GST array is a
matrix rather than a vector, and therefore GST require special
methods for its analysis. Computational analysis of GST data
are therefore much more difficult than their two-dimensional
counterparts. All these problems, among many other problems,
substantially affect the effectiveness and efficiency of analysis
algorithms devised for GST data.

For sample classification, it is necessary to reduce the
dimension of the data in order to avoid the problems aris-
ing from the curse of dimensionality. Linear dimensionality
reduction (LDR) is a widely used linear algebraic technique
mainly including Linear dimension analysis (LDA), princi-
pal component analysis (PCA), singular value decomposi-
tion (SVD), independent component analysis (ICA) and non-
negative matrix factorization (NMF). NMF has attractions of
simple implementation, good interpretation, sparsity, and using
non-negative information, for its applications in microarray
data analysis. The gene expression intensities and ratios are
naturally non-negative. NMF becomes popular after [5]. Given
a gene-sample dataset X with m genes and n samples. Matrix
X can be factorized into two non-negative factors, as follows

Xm×n ≈ Am×rY r×n X,A,Y ≥ 0, (1)

where r ≤ min(m,n), A and Y are the basis matrix and the
coefficient matrix, respectively. Multiplicative update rules [6]
[7] are widely used algorithms and are simple to implement.
Other algorithms, for example alternating least squares (ALS),
are reviewed in [7]. A novel idea of feature selection is
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Fig. 1. An Example of a GST Dataset.

that we can analyze the basis matrix to select discriminative
features, instead of analyzing the training set directly. In this
report, we describe an unsupervised feature extraction methods
based on NMF in order to classify microarray samples data.
We also investigate the possibility of using NMF to select
discriminative genes.

In multilinear algebra, a tensor of order d [8] is a d-
dimensional array, and tensor algebra is the extension of
vector and matrix algebra to order-d tensors. Since a GST
microarray data is naturally an order-3 tensor (see Fig. 1),
therefore, known theories from tensor algebra can be used to
analyze such data rather than performing matrix operations on
a matricized representation of the GST data (see Fig. 2 for a
matricized example). Tensor decomposition is an extension of
matrix factorization to tensor data and attempt to find a smaller
representation describing the initial tensor data. Matrix factor-
izations, such as SVD, ICA, and NMF, have been extended
to higher-order SVD (HOSVD) [9], multilinear ICA (MICA)
[10], and higher-order NMF (HONMF) [11], respectively, for
tensor data. Tensor decomposition is investigated in the context
of sample classification. Since the original GST data are non-
negative, our approach is to perform unsupervised HONMF
based multilinear dimension reduction (MLDR) method in
order to extract a small sets of discriminative and non-negative
features, and then perform sample classification in the reduced
space. As far as we know, this report is the first attempt at
using tensor methods for classifying GST data, (see the next
section for their applications on other types of microarray
data).

This report is organized as follows. Related works on NMF
and tensor decomposition are reviewed next section. NMF
based classification and gene selection are described in section
IV and section V, respectively. Section VI introduces our
proposed HONMF tensor decomposition based classification
methods. Finally, we draw our conclusions.

II. RELATED WORKS

PCA, SVD, and ICA have been used to extract features
from microarray data [12], [13]. NMF has been used to cluster
samples or genes [14] [15]. It has also been used in classifi-
cation problems such as, musical instrument classification [7],
face recognition [7], and microarray data classification. [16]
used correlation coefficient to decide which class the extracted
features (by ICA and NMF) characterize. [17] proposed dis-

criminative mix models to classify non-negative microarray
gene expression data. The samples reduced by a sparse NMF
are the input of the mix models. [18] used NMF or a sparse
NMF to extract features, and employed SVM classifier in the
feature space. [19] proposed a ranking method based on a
sparse NMF in order to improve the prediction accuracy.

Ref. [1] proposed an integrated Bayesian inference system
(IBIS) to select triplets of genes for classifying INFβ samples
(a GST microarray data) but using only the first time point,
and thus did not benefit from (nor consider) the full GST data.
Ref. [4] used support vector machines based on dynamical
systems kernels (denoted by dsSVM in this paper) to classify
INFβ samples. Since each GST data sample is represented
by a matrix, it is not appropriate to use the kernels which
take vectorial inputs, such as, the radial basis functions (rbf).
Dynamical systems kernels accept matrix inputs and take
into account the temporal information. Two samples can be
modeled by two separate linear time invariant (LTI) dynamical
systems X = (P,Q,R, S, x0) (where x0 is a vector, and P , Q,
R, and S are matrices estimated by a SVD based approach)
and X ′ = (P ′, Q′, R′, S′, x′

0). The dynamic systems kernel
between X and X ′ is defined as

k(X,X ′) = xT
0M1x

′
0 +

1

eλ − 1
[trace(SM2) + trace(R)] (2)

where M1 and M2 satisfy the Sylvester equation [4], and λ is
a positive parameter of the kernel. Ref. [20] devised generative
hidden Markov models (GenHMMs) and discriminative HMMs
(DiscHMMs) approaches for classifying INFβ samples. Sam-
ples from the same class are used to train a GenHMM.
Samples from all classes are used to train a DiscHMM, for
each class. Then, in both methods, a test sample is assigned
to a class based on maximum conditional likelihood. Baum-
Welch algorithm is used to estimate the parameters of the
models. For DiscHMMs, a backward gene selection method is
first performed to find a small number of discriminative genes
before training the models. [21] proposed a robust constrained
mixture estimation approach to classify the INFβ data. This
approach combines the constrained clustering method with a
mixture estimation classification framework. Subdivision of
classes and mislabeled samples can be investigated by this
approach. During training, negative constraints were restricted
on pairs of samples. The constrained mixture model, with lin-
ear HMMs, as components, is optimized by an EM algorithm.
The supervised version of this approach (HMMConst) only
uses training set in the estimation of parameters, while the
semi-supervised version (HMMConstAll) uses all data. The
emission probability for each state is modeled by mixtures
of multivariate Gaussians for patient expression values, noise,
and missing values, respectively. In order to select genes
contributing to classification, a HMM based gene ranking
method is used. Each component of the mixture model is
assigned to a class. When testing, a test sample is assigned
to a class according to the maximum entry in their posterior
distribution.

Ref. [22] applied HOSVD on an order-5 tensor data for



face recognition. In the training phase, a basis tensor for a
certain view, illumination, and expression is obtained through
HOSVD and then is matricized to a basis matrix in order
to obtain vector of each training sample. In the testing, the
coefficient vector of a testing sample is obtained through
a linear projection approach using the basis matrix. A 1-
nearest neighbor (1-NN) classifier is used to determine the
class labels of the testing samples. Ref. [23] used HOSVD to
analyze the integration of DNA microarray data from different
studies. They create a tensor dataset of order 3 by combining
three gene time-series microarray datasets from yeast cell-
cycle studies, and then decompose the tensor by HOSVD.
The resulting core tensor obtained from the decomposition
contains the significant features representing important biolog-
ical experimental phenomena. Ref. [24] devised two different
approaches based on HOSVD decomposition to classify a
dataset of handwritten digits represented as a an order-3
tensor data. HOSVD is used to extract small feature sets that
explains the original data but the methods differ in how the
core basis tensors are obtained (i.e., either from each class
separately, or from the whole data) and in how the class of
a test sample is predicted (i.e, either by regression or by
projection). Ref. [10] extended ICA to MICA, and used it
for extracting features to be used in face recognition. Initially,
facial images are vectorized then represented as an order-3
tensor data. MICA is employed to decompose this tensor into
factors containing important facial features. A test sample is
then multilinearly (rather than linearly, as in [22]) projected
into the space spanned by the obtained core basis tensor and a
nearest-neighbor classifier using cosine similarity measure is
employed to predict the class of the test sample. Ref. [25] also
applied MICA decomposition to classify integrated tumor gene
expression data from different studies. Their working order-3
tensor is a combination of three gene-sample tumors datasets.
Two core basis tensors are obtained via MICA decomposition,
separately over training samples and test samples. A SVM
classifier is then trained on the matricized version of the core
tensor obtained from the training sample and is validated using
the core tensor generated from the test data.

III. NOTATION

Hereafter, we use the following notations in the rest of the
paper:

• A matrix is denoted by a bold capital letter, e.g. A.
• A (column) vector is denoted by a bold lowercase letter,

e.g. a.
• A bold lowercase letter with a subscript, ai, denotes the

i-th column vector in matrix A.
• The italic lowercase letter with two subscripts, aij , is the

(i, j)-th scalar element of matrix A.
• A boldface Euler script, e.g. X, denotes an order-3 tensor.

That is X ∈ RI×J×K .
• X(n) denotes the matrix obtained through the mode-

n matricization of the tensor X. Columns of X(n) are
the mode-n fibers of tensor X. A mode-n fiber is a
vector defined through fixing every index but the nth
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Fig. 2. The Mode-1 Matricization of the Tensor in Fig. 1
index. This is the extension of matrix row and column
in tensor algebra. X(1) therefore denotes the matrix
of size I × JK, unfolded in mode-1 of X, that is
X(1) = [X(1)1,X(1)2, · · · ,X(1)K ]. See Fig. 2 as an
example.

• X(1)p denotes the p-th frontal slice of X, of size I × J .
• The (i, j, k)-th scalar element of X is denoted by xijk.
Also, A ⊗B denotes the Kronecker tensor product [8] of

matrices A and B.
The mode n product of a tensor X and a matrix A, written

as X×n A, is:

X×n A =

In∑
in=1

xi1i2···iNajin , (3)

where X ∈ RI1×I2×···×IN and A ∈ RJ×In . This results in a
tensor Y ∈ RI1×···In−1×J×In+1···×IN .

IV. NMF BASED CLASSIFICATION

This work will appear in the proceeding of the 2010 IEEE
International Conference on Bioinformatics & Biomedicine
[37].

Features must not been extracted from the overall data X ,
because it would result in overfitting problem. There must be
two steps – training on training set to generate new features
and feature space, and testing on test set to project the test
samples from the original space into the feature space. Given
a 2-dimensional gene-sample dataset X of size m × n, with
samples in columns, it should be split into independent training
set X train

m×p with p samples and test set X test
m×(n−p) with n− p

samples. First, the training set X train is decomposed as follows
by NMF:

X train
m×p ≈ Atrain

m×rY
train
r×p, X train,Atrain,Y train ≥ 0, (4)

where r ≤ min(m, p). Multiplicative update rule based al-
gorithm in [14] is employed in this paper. The reason why
NMF can be used in feature extraction is that a sample xi

can be approximately represented by a linear combination of
the columns of Atrain with coefficients in the ith row of Y train.
Atrain is the basis matrix and will be used in the test step. Each
column of Atrain is the extracted features, called metagene
[14]. All the metagenes span the feature space, called NMF
space. Y train is the coefficients matrix. Its column yi is the
representation of i−th sample in the NMF space. After that,
the test samples should be projected into the NMF space to
obtain these presentations in this space, as follows:

X test
m×(n−p) ≈ Atrain

m×rY
test
r×(n−p),X

test,Atrain,Y test ≥ 0 (5)



It should be noted that this is a non-negativity constrained
least squares (NLS) problem. Three projection algorithms are
introduced, as follows, to solve this problem. We can use
a multiplicative updating based projection method [7]. In
this method, Y test is iteratively updated by the multiplicative
update rule while keeping Atrain intact. The second projection
method is pseudo-inverse based method [19]. The test sam-
ples is projected by a transformation matrix A, as follows:
Y test = Atrain †X test, However, the drawback of this method
is that the non-negative constraint of Y test is violated. The
improved version of this method is to enforce the negative
values in Y test to zeros, while holding the non-negative values
[7]. This method is simple and fast, but has large fitting error.
The third projection method is to use an active set method to
solve Eq.(5) [26].

After the dimension of the samples is reduced and discrim-
inative information is captured, the last step is to learn and
test in the NMF space. Y train is used to train a classifier,
and Y test is used to test the prediction performance. In this
paper, due to efficiency, simplicity, and availability for multi-
class problems, k-NN is employed to classify samples in NMF
space. With respect to different projection methods in the test
stage, we have three unsupervised feature extraction and clas-
sification approaches, named uNMFmu, uNMFpi, uNMFnls,
respectively.

V. NMF BASED GENE SELECTION

This work is partly published in the proceeding of the
2010 IEEE International Conference on Bioinformatics &
Biomedicine [37]. We are preparing a manuscript titled “A
New Approach to Feature Selection Using Linear Dimension-
ality Reduction”. This paper will be submitted to the 1st IEEE
International Conference on Computational Advances in Bio
and Medical Sciences [41]. Computational intelligence will be
used to search the optimal subset of genes with respect to our
new criterion. This work will be submitted to the 2011 IEEE
Congress on Evolutionary Computation [42], and the extended
version will be submitted to Pattern Recognition Letter or
Neurocomputing.

NMF can also be used to select discriminative genes while
filtering out redundant genes. [19] proposes a gene ranking
method as follows. Elements of Atrain less than a fixed thresh-
old are set to 1, and the number of ones in each row is the score
of the corresponding gene. Genes are then sorted in decreasing
order and the top t genes are selected. In order to investigate
the biological pathways, [15] also proposes a gene ranking
method in which a gene is scored as follows

Gene score(i) = 1 +
1

log2(r)

r∑
j=1

p(i, j) log2 p(i, j), (6)

where p(i, q) = Atrain[i,q]∑r
j=1 Atrain[i,j]

. The classification performance
of this measure is still not clear. For simplicity, we call the
first criterion ZH , and the second IE. In both of the criteria,
Atrain is generated by a sparse NMF [15].

The aim of feature subset selection is to identify a subset
of r features, where r ≪ m, such that the subset of features
is as efficient as possible. The efficiency is quantified by a
measurement on a specific classifier and a validation method
(e.g. cross-validation ). More formally, we can use a classifier
or an objective function as follows:

f([xi1 , xi2 , . . . , xir ]) : R
r×n → R , (7)

where 1 ≤ i1 < i2 < . . . < ir ≤ n.
For the sake of simplicity in the notation we use A instead

of Atrain. In accordance with the above discussion, our idea
is to find an unordered standard basis vector matrix C =
[e1, e2, . . . , er] which is closest to A = [a1,a2, . . . ,ar]. A
can be obtained by the LT or MF method. Each column of
C is a standard basis vector (coordinate vector) containing a
single value ”1”. Also, the columns and rows of C must be
distinct.

We can give a definition of unordered standard coordinate
(USC) basis matrix: if a matrix Cm×n satisfies the following
constraints,

1) Cij = 0 or 1,
2)

∑m
i=1 Cij = 1,

3)
∑n

j=1 Cij = 0 or 1,

then C is a USC basis. If C is a USC basis, an obvious
property of it is m ≥ r. Based on the definition of basis: a basis
of the space S of Rm, is a collection of linearly independent
vectors V that spans S. Thus, we can use matrix angle to
measure the closeness of a pair of bases. The aim of seeking
the closest USC basis Cm×r to a basis Am×r is equivalent to

argC max{f(C) = cos(A,C)}. (8)

VI. TENSOR BASED CLASSIFICATION

The general tensor decomposition based classification ap-
proaches are submitted to the Bioinformatics Journal [34], and
is published in the proceeding of the 7th International Meeting
on Computational Intelligence Methods for Bioinfomatics and
Biostatistics [35]. Our proposed methods are compared with
other methods in our paper that is submitted to the 2011 IEEE
Symposium on Computational Intelligence in Bioinformatics
and Computational Biology [36]. Our paper that extends
NMF based classification to HONMF based classification will
appear in the proceeding of the 2010 IEEE International
Conference on Bioinformatics & Biomedicine [37].

We extended the above NMF based approach into the
higher-order version for GST data. Tensor decomposition
mainly includes PARAFAC and Tucker decompositions [8].
HONMF is a tucker3 decomposition with non-negativity con-
straints. Fig. 3 is an example of Tucker3 decomposition.
HONMF factorizes a non-negative tensor XI×J×K into a
non-negative core tensor CP×Q×R and 3 non-negative mode
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Fig. 3. An Example of Tucker3 Decomposition of the Tensor in Fig. 1.
matrices (factors) GI×P , T J×Q, and SK×R as follows:

X ≈ C×1 G×2 T ×3 S = JC;G,T ,SK
=

P∑
p=1

Q∑
q=1

R∑
r=1

cpqrgp ◦ tq ◦ sr, (9)

where P ,Q, and R are the number of mode vectors (or ranks)
of the mode matrices G, T , and S, respectively. a ◦ b is
the outer product of vectors a and b. In light of Eq. 9, it is
clear that an element of core tensor C indicates the degree
of interaction among the corresponding mode vectors from
different mode matrices. Algorithm based on multiplicative
update rules can converge to local optimum [11].

Next, we describe our unsupervised dimension reduction
approaches based on HONMF. Let X be a training set, from
a GST dataset, with I genes, J time points, and K samples.
Through Eq.(9), we can obtain

X ≈ B×3 S, (10)

where B = C ×1 G ×2 T is a non-negative tensor. Making
use of multilinear operations, we have

X(1) ≈ IGB(1)(S ⊗ IT )
T

= [B1,B2, · · · ,BR]

s11IT · · · sk1IT

...
...

...
s1RIT · · · skRIT

 , (11)

where IG and IT are identity matrices of sizes I × I and
J × J , respectively. Thus the k-th frontal slice of X, that is,
the k-th sample, can be fitted by the additive summation of
the frontal slices of B:

X(1)k ≈
R∑
i=1

Brskr, (12)

where the coefficients are in the k-th row of S. Thus, B is
the basis matrix for the samples and S is the encoding matrix.
We can define the matrix space spanned by B as the HONMF
feature space, and sk as the non-negative representation of the
k-th sample in the feature space. These non-negative matrix
slices of B are the HONMF features. This reduces the original
sample slice to a vector sk in the feature space.

In the test phase, each test sample Y l is projected into the
HONMF feature space. Y l should also be an additive linear
combination of the basis matrices in B:

Y l =
R∑

r=1

Brαr, (13)

where B is obtained in the training step and α =
[α1, α2, · · · , αR]

T is the representation of Y l in the feature
space. Finding α is equivalent to solve the following general-
ized least squares problem:

min
α

∥Y l −
R∑

r=1

Brαr∥2F , α ≥ 0, (14)

where ∥ • ∥F is Frobenius norm of a matrix. The general
solution to this problem is αr = <Y l,Br>

<Br,Br>
[24] [27], where

< •, • > is the inner product of two matrices. For different
test samples, we put α’s in the corresponding rows of a non-
negative coefficient matrix A.

Alternatively, given the test samples Y, we can fix C, G,
and T to calculate the coefficient matrix A of Y. We need to
find A that satisfies

Y ≈ C×1 G×2 T ×3 A. (15)

Higher-order orthogonal iterations (HOOI) is an ALS Tucker3
decomposition algorithm which restricts orthogonality on fac-
tors [8]. For HOSVD and HOOI, the mode matrices are
orthogonal and A is the R leading left singular vectors of
Z(3). Z(3) is matricized from Z which is calculated by the
following equation:

Z = Y×1 G
T ×2 T

T . (16)

But, for HONMF, the constraint on the mode matrices is non-
negativity rather than orthogonality. Instead of deriving an
equation similar to Eq.(16), we can just update A iteratively
using its multiplicative update rule in [11], while keeping C,
G, and T constant.

These feature extraction methods are termed multilinear
dimension reduction (MLDR), extended from LDR in linear
algebra. Once A is obtained, we do not need to learn on the
training samples and classify the test samples represented by
the matrices. Instead, any classifier can be trained and tested
in the feature space where a sample is represented by a vector,
that is any classifier can be trained on S and predict the classes
of the test samples (the rows of A). The same scheme is
also implemented using HOSVD and HOOI on the purpose
of comparison. With respect to different projection methods
in the test phase, these tensor based classification methods
are denoted by uHONMFgls, uHOSVDgls, uHOOIgls, and
uHONMFmu, uHOSVDtf, uHOOItf.

The unsupervised MLDR techniques above can be modified
in a supervised manner. Let m be the number of classes
in the data. The idea is to first partition the training set
into m subsets X1, · · · , Xm, where each subset Xi con-
tains only samples of class i. Next, m core tensors B1,
· · · , Bm are obtained through decomposition using Eq.(10).
The resulting basis matrices are then normalized using the
Frobenius norm. A normalized test sample can be fitted
by these basis tensors, respectively, through Eq.(14). This
sample is assigned to the class where the minimal fitting
residual is obtained. For simplicity, we denote the supervised
version of HONMF, HOSVD, and HOOI based classification



methods by sHONMF, sHOSVD, and sHOOI. This supervised
decomposition approach is described in [24] for hand written
recognition using HOSVD.

VII. EXPERIMENTS

A. NMF Based Feature Extraction and Classification

We test the performance of the NMF based methods over
three binary-class and two multi-class gene-sample datasets
as summarized in Table I. Gene selection is not applied in
this part. PCA is used as a benchmark method. The Euclidean
distance based 3-NN is used. 7-fold cross-validation (CV) is
employed to partition a dataset into training sets and test sets.
The optimal number of metagenes r is searched through line
search according to the classification performance. The mean
performances of 20 runs are shown in Table II. Specificity,
sensitivity, and accuracy are defined by TN

TN+FP , TP
TP+FN , and

TN+TP
TN+TP+FN+FP , respectively, where TN , TP , FN , FP are
the numbers of true negative, true positive, false negative, and
false positive samples, respectively. It can be seen that the
NMF based approaches obtains better accuracies in general.
Also, the NMF based approaches tend to extract a small
number of features.

TABLE I
GENE-SAMPLE DATASETS

Dataset #Classes #Genes #Samples
Binary-class Leukemia [14] 2 5000 27+11=38

Medulloblastoma [14] 2 5893 39+21=60
Colon [28] 2 2000 40+22=62

Multi-class Leukemia [14] 3 5000 19+8+11=38
SRBCT [29] 4 2308 23+8+12+20=63

TABLE II
PERFORMANCE OF VARIOUS NMFS AND PCA.

Data Methods Optimal rSpecificitySensitivityAccuracy

Binary Class uNMFmu 3 0.993 0.925 0.977
uNMFpi 2 0.980 0.907 0.959

Leukemia uNMFnls 2 0.980 0.907 0.959
PCA 4 0.989 0.879 0.957

Medulloblastoma

uNMFmu 6 0.933 0.793 0.895
uNMFpi 6 0.912 0.661 0.839
uNMFnls 6 0.910 0.668 0.839

PCA 5 0.985 0.418 0.837

Colon

uNMFmu 5 0.788 0.897 0.858
uNMFpi 6 0.814 0.917 0.881
uNMFnls 6 0.810 0.909 0.874

PCA 10 0.706 0.950 0.863

Multi-class uNMFmu 3 - - 0.973
uNMFpi 3 - - 0.950

Leukemia uNMFnls 3 - - 0.953
PCA 4 - - 0.935

SRBCT

uNMFmu 6 - - 0.954
uNMFpi 12 - - 0.942
uNMFnls 10 - - 0.942

PCA 19 - - 0.958

B. NMF Based Gene Selection

We also compared the performance of the gene selection
criterion IE with ZH. The classification performance is shown
in Table III. Here, IE (or ZH) indicates gene selection criterion
IE (or ZH) is used and then 3-NN classification is performed.
IE+NMF (or ZH+NMF) means gene selection criterion IE

(or ZH) is employed prior to uNMFmu. We can find that, in
general, gene selection criterion IE is much effective than ZH.
With hundreds of selected genes by criterion IE, the accuracies
do not decrease dramatically on some datasets, while the
accuracies are increased on some datasets, comparing to these
in Table II.

TABLE III
COMPARISON OF TWO NMF BASED GENE SELECTION METHODS

Data Methods Number of Selected Genes
100 200 300 400 500 600

Binary ClassZH 0.780 0.775 0.771 0.786 0.782 0.767
ZH+NMF0.718 0.746 0.745 0.732 0.765 0.793

Leukemia IE 0.912 0.929 0.930 0.939 0.949 0.939
IE+NMF 0.925 0.939 0.939 0.956 0.975 0.961

Medullo- ZH 0.547 0.562 0.583 0.634 0.668 0.678
ZH+NMF0.604 0.554 0.598 0.591 0.585 0.612

blastoma IE 0.668 0.692 0.691 0.691 0.704 0.719
IE+NMF 0.673 0.713 0.722 0.702 0.716 0.743

Colon

ZH 0.799 0.791 0.797 0.803 0.811 0.826
ZH+NMF0.831 0.821 0.834 0.836 0.844 0.854
IE 0.827 0.848 0.857 0.875 0.868 0.864
IE+NMF 0.832 0.851 0.860 0.870 0.874 0.870

Multi-class ZH 0.501 0.579 0.585 0.589 0.600 0.627
ZH+NMF0.468 0.483 0.486 0.455 0.447 0.450

Leukemia IE 0.907 0.927 0.942 0.943 0.956 0.933
IE+NMF 0.921 0.925 0.912 0.951 0.959 0.968

SRBCT

ZH 0.968 0.976 0.980 0.979 0.980 0.979
ZH+NMF0.951 0.972 0.976 0.975 0.977 0.977
IE 0.982 0.979 0.977 0.977 0.982 0.981
IE+NMF 0.980 0.980 0.978 0.974 0.977 0.971

C. Tensor Decomposition Based Feature Extraction and Clas-
sification

We used our HONMF approaches to predict good or bad
responders to Interferon beta (INFβ) treatments. INFβ is
a protein used for treating patients afflicted with multiple-
sclerosis (MS). Some MS patients after INFβ therapy do not
respond well to the drug and the reasons are still not clear
[1]. Baranzini et al. [1], among others researchers, applied
Bayesian learning method on a clinical time-series dataset
to determine pairs or triplets of genes that can discriminate
between bad and good INFβ responders. The initial dataset is
a GST data sampled from 53 MS patients who were initially
treated with equal dose of INFβ over a time period. This initial
dataset contains the expression measurements for 76 genes at 7
time points for each patient, with 31 patients responding well
and the remaining 22 responding bad to the treatment. This
dataset contains genes with missing expression measurements
at some time points. Those genes and corresponding samples
were removed from our analysis, and hence, the resulting
”complete” data contains 53 genes and 27 samples (18 good
responders and 9 bad responders).

Our proposed HONMF based methods were applied to this
INFβ data. They were compared with GenHMMs and Dis-
cHMMs approaches [20], dsSVM [4] approaches (described in
the related work section), uHOSVDls, uHOOIls, uHOSVDtf,
uHOOItf, and the supervised tensor based methods. We also
run our experiment on a SVM classifier based on rbf ker-
nels (rbfSVM) over the vectorized samples. Due to technical
problems, we can not run HMMConst and HMMConstAll



[21]. Matlab codes for HONMF and HOOI from [11] and
[30], respectively, are used. We used 3-NN with Euclidean
distance in the classification phase. Due to the small num-
ber of samples, 9-fold CV is employed. All our methods
are performed for 20 runs, and the mean performances and
standard deviations are reported in Table IV. Specificity is the
prediction accuracy of the good responders, while sensitivity
is for the bad responders. The parameter for GenHMMs
and DiscHMMs is the number of selected genes; absence of
such parameter means gene selection is not used. The first
parameter of dsSVM is the number of hidden states, and the
second one is the value of λ. The parameter of rbfSVM is the
value of λ in the rbf function. The parameter of the tensor
decomposition based approaches are rank-(P,Q,R). All of
the parameters in the above approaches are obtained through
line/grid search with respect to the classification performance.

TABLE IV
ACCURACY ON COMPLETE INF-BETA DATA

Methods Param. Specificity Sensitivity Accuracy
GenHMMs - 0.861±0.036 0.556±0.000 0.759±0.044
DiscHMMs - 0.861±0.036 0.556±0.000 0.759±0.044
GenHMMs 7 0.861±0.063 0.561±0.008 0.761±0.047
DiscHMMs 7 0.861±0.063 0.561±0.008 0.761±0.047

dsSVM 1,5 0.972±0.082 0.422±0.013 0.789±0.023
rbfSVM 1 1.000±0.000 0.000±0.000 0.667±0.000

uHOSVDgls 7,3,3 0.839±0.039 0.594±0.020 0.757±0.050
uHOOIgls 4,3,10 0.900±0.031 0.500±0.012 0.767±0.035

uHONMFgls 3,5,3 0.897±0.079 0.306±0.034 0.700±0.052
uHOSVDtf 4,2,3 0.764±0.053 0.550±0.041 0.693±0.046
uHOOItf 3,7,3 0.811±0.048 0.661±0.055 0.761±0.050

uHONMFmu 3,5,3 0.789±0.029 0.867±0.154 0.815±0.040
sHOSVD 4,3,8 0.831±0.054 0.633±0.012 0.765±0.044
sHOOI 3,4,4 0.761±0.045 0.667±0.000 0.730±0.039

sHONMF 3,4,6 0.958±0.110 0.006±0.069 0.641±0.075

As shown in Table IV, uHONMFmu obtains the high-
est mean prediction accuracy (0.8148). This is better than
GenHMMs and DiscHMMs without and with gene selec-
tion (0.7593 and 0.7611, respectively), and dsSVM (0.789).
uHONMFmu also outperforms uHOSVDgls, uHOOIgls, and
uHOOItf. The reasons why uHONMFls and uHOOItf do not
performed well needs further investigation. The supervised
sHOSVD, sHOOI and sHONMF did not achieve good results.
The small parameters of the tensor methods indicate that only
few genes pathways and biological stages respond to the INFβ
treatment. The MLDR techniques are able to dramatically
reduce the dimension of the original dataset and transform the
sample matrices into new ”equivalent” short vectors which
are used for classification. In uHONMFmu, a 53 by 7 test
sample can be represented by a vector of size 1 by 3 in feature
space; thus reducing the data by 99.19% while preserving
discriminative information. The execution times (in seconds)
were recorded for each method. Tab.V shows the results.
The tensor decomposition based approaches use the same
parameter (3, 5, 3). The number of selected genes is 7. It
can be seen that HONMF based approaches are faster than
the HMMs based methods while giving at least comparable
classification results, though slower than HOSVD and HOOI
methods.

TABLE V
RUNNING TIME ON COMPLETE INF-BETA DATA

Methods DiscHMMs uHOSVDgls uHOOIgls uHONMFtf
Time (s.) 2.117× 103 1.321 1.057 1.662× 103

VIII. CONCLUSION

Non-negative information can help in analysis of microarray
gene expression data. This paper investigated the performance
of NMF based classification scheme for binary and multi-
class microarray datasets, and extended it for GST data, which
is our main contribution. Methods devised specifically for
the analysis of GST data will be very useful in the near
future, as many recent clinical data are given in the form
of tensor data of order 3 or more. In this regards, we have
implemented a HONMF-based scheme for classifying sample
GST data from INFβ data. We have shown that our approach
are faster and still comparable in classification performances to
two recent methods developed for analyzing the same dataset.
More research need to be done, however, to improve the
classification performances of the tensor-based methods (for
instance, SVM classifiers will be investigated deeply), and in
particular to devise methods that can deal with missing values.
We also plan to investigate gene selection methods such as
gene-pairs or gene-triplets search algorithms for bio-marker
selection. Beside classification, bi-clustering and tri-clustering
approaches for GST data will be studied for determining
pattern of genes or samples given certain doses (in dose-
response GST data) or time intervals (in drug-response GST
data).

APPENDIX A
OTHER TOPICS

An important concern when analyzing microarray data is
how to handle missing values. There are three choices to
deal with this problem. The safest way is to remove vectors
(for 2D microarray data) or matrices (for 3D microarray
data) with missing values. But this remove the other useful
information as well. If missing values appear randomly, we can
estimate/impute them using statistical and machine learning
methods. We extended the KNN and SVD based missing
value imputation methods (KNNimpute and SVDimpute, re-
spectively) for 2D microarray data into methods (3KNNimpute
and 3SVDimpute, respectively) for 3D microarray data [35].
If we encounter systemical missing values, we need to avoid
touching missing values, while using the other existing values.
In NMF and tensor decomposition, weighted least squares
based methods are proposed in literature to handle missing
values [32] [33].

For clustering microarray gene time-series data, we pro-
posed multiple alignment based clustering methods, such as
spectral clustering, to find gene patterns [39] [38]. Integral
distance is used as dissimilarity measure between gene ex-
pression profiles. We also presented new index to evaluate
the number of clusters. Experiments results show that our
proposed clustering methods outperform the other methods for
mining gene time-series data.
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Linköping University, Linköping, Sweden, 2003.

[28] U. Alon, et al., “Broad patterns of gene expression revealed by clustering
of tumor and normal colon tissues probed by oligonucleotide arrays,”
PNAS, vol. 96, no. 12, pp. 6745-6750, 1999.

[29] J. Khan, et al., “Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks,” Nature Medicine,
vol. 7, no. 6, pp. 673-679, 2001.

[30] C.A. Andersson and R. Bro, “The n-way toolbox for MATLAB,”
Chemometr. Intell. Lab. Syst., vol. 52, pp. 1-4, 2000.

[31] C.A. Andersson and R. Bro, “Improving the speed of multi-way al-
gorithms: Part I. Tucker3,” Chemometrics and Intelligent Laboratory
Systems, vol. 42, pp. 93-103, 1998.

[32] S. Zhang, W. Wang, J. Ford, and, F. Makedon, “Learning from incom-
plete ratings using non-negative matrix factorization,” Proc. the 6th SIAM
Conference on Data Mining, ML, 2006, 548-552.

[33] E. Acar, D. M. Dunlavy, T. G. Kolda and M. Mrup, “Scalable tensor
factorizations for incomplete data,” Chemometrics and Intelligent Labo-
ratory Systems, 2010, in press.

[34] Y. Li and A. Ngom, “Classification of gene-sample-time microarray
expression data via tensor decomposition methods,” Bioinfomatics, under
review, submitted on Sep.06, 2010, manuscript ID: BIOINF-2010-1329.

[35] Y. Li, A. Ngom, “Classification of clinical gene-sample-time mi-
croarray expression data via tensor decomposition methods,” The
7th International Meeting on Computational Intelligence Methods for
Bioinfomatics and Biostatistics, Palermo, Sep., 2010, (CD publication,
http://cibb10.pa.icar.cnr.it/technical-program).

[36] Y. Li and A. Ngom, “Tensor decomposition methods for the classi-
fication of three-dimensional microarray data,” Proc. the 2011 IEEE
Symposium on Computational Intelligence in Bioinformatics and Com-
putational Biology, under review, submitted on Oct.29, 2010, manuscript
ID: 1569376277.

[37] Y. Li and A. Ngom, “Non-negative matrix and tensor factorization
based classification of clinical microarray gene expression data,” IEEE
International Conference on Bioinformatics & Biomedicine, Hong Kong,
Dec. 2010, in press, paper ID: B343.

[38] Y. Li, N. Subhani, A. Ngom, and L. Rueda, “Alignment-based versus
variation-based transformation methods for clustering microarray time-
series data,” Proc. the 2010 ACM International Conference On Bioin-
formatics and Computational Biology, Niagara Falls, NY, Aug. 2010,
pp.53-61.

[39] N. Subhani, Y. Li, A. Ngom, and L. Rueda, “Alignment versus variation
vector methods for clustering microarray time-series data,” Proc. the
2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain,
Jul. 2010, pp. 818-825.

[40] Y. Li, A. Ngom, and L. Rueda, “Missing value imputation methods for
gene-sample-time microarray data analysis”, Proc. the 2010 IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational
Biology Montreal, Canada, May 2010, pp.183-189.

[41] Y. Li, L. Rueda, M. Herrera, and A. Ngom, “A new approach to
feature selection using linear dimensionality reduction,” The 1st IEEE
International Conference on Computational Advances in Bio and Medical
Sciences, Orlando, Feb., 2011, in preparation.

[42] Y. Li, L. Rueda, M. Herrera, and A. Ngom, “A new approach to feature
selection using linear dimensionality reduction and genetic algorithm,”
The 2011 IEEE Congress on Evolutionary Computation, New Orleans,
June, 2011, in preparation.


