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Abstract—Cellular neural network (CNN) consisting of multi-  neighbors’ topology.
layer perceptrons (MLP) on each of its cells is called a cellular

multilayer perceptron (CMLP). In this research, CMLP is used : ;
to develop a wide area monitor for a Smart Grid. The study Implementation of different types of neural networks on

is carried out in personal computer (PC) using MATLAB, a hardware ha_s been studied in literatures in the past [12]7[1 _
non real-time platform, as well as on a digital signal processor Implementation of CNN on hardware has also been studied in
(DSP), a real-time platform. The non real-time results obtained literatures [13], [14]. In [15], graphics processing uri&PU)

by CMLP are also compared with that of an MLP. The study is have been utilized as hardware platforms for parallelizing
unique in its implementation of a CMLP for given application, in - o\ gperation. However, most of these studies are related to

its training approach and real-time implementation by interfac- . . . . .
ing the real-time digital simulator with the DSP. The results show single unit based cell and implementation of structures wit

scalability of the CMLP architecture for Smart Grid applications ~ €ach cell representing a neural network remains to be eaghlor
and the feasibility of its use in a real-time application. In this work, a CMLP has been implemented on a digital signal

Index Terms—Backpropagation, CNN, Cellular Multilayer  processor (DSP), trained and tested in real-time by interga
Perceptron, Hardware Implementation, MIMO, Power system, \ith the real-time digital simulator (RTDS). Similar stedi
real-time, Smart Grid, Wide Area Monitor ; . .

are also performed in non real-time using MATLAB. The
results of the CMLP implemented on PC using MATLAB
are compared with that of an MLP to show scalability. The

Cellular neural networks (CNN) was introduced by Chugsmaining sections of the paper are arranged as followsrtSma
and Yang in 1988 [1]. It consists of individual units (cellsigrid application of CMLP is described in Section:Il. Seotio
connected to each of its neighbors on a cellular structufg.describes the proposed design of WAM using CNN. CNN
Each cell of the CNN is a computational unit. Most Ofraining approach is described in Section IV. Results and

the applications of this architecture of CNN are focusegiscussions are presented in Section V and conclusions are
on pattern recognition [2], [3] and image processing [4fiven in Section VI.

[5]. Another form of CNN that exists in literatures is the
structure containing one or more forms of neural network [l. SMART GRID APPLICATION OFCMLP

(NN) architectures at each cell. Such CNN can be SymmetrlCStab|||ty of electric power System depends on proper
with each cell consisting of the same type and size of Nfnctioning of various power system components. Since
or asymmetric where different cells may consist of différerpower system is a massively distributed network, wide area
types and sizes of neural networks. A CNN containing @onitoring is essential to assess the current state of these
multilayer perceptron (MLP) in each of its cells is calle@omponents. Based on this assessment, related controh acti
as cellular MLP (CMLP). CNN structure consisting ofis taken on the power system components in order to keep
simultaneous recurrent neural networks (SRN) at each gellfie system in stability. Therefore, wide area monitoring an
called CSRN and is studied in [6]-[8]. In CNN, each cell igontrol system (WAMCS) is an integral part in transitioning
connected only to its adjacent cells. In CMLP and CSRMsom the traditional power system to a Smart Grid. However,
the connection of different cells to each other is deternhin@vide area monitoring becomes Cha”enging as the size of

by the kind of application. In [9], each cell represents ong@e electric power grid, and consequently the number of
bus and it is connected to other cells in the same Waymponents to be monitored, grows.

as the connection of the buses. In this study, CMLP has

been used for speed deviation predictions of generators inapplications of wide area monitoring systems (WAMS) in
a multimachine power system, where each cell representpdiver system for state estimation, disturbance identiéioat
generator and connection of the cells is based on ‘nearesfnd wide area PSS have been reported in literature [16],
. . _ , [17]. Various design aspects of WAMCS are studied in [18].
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and hence can be used to monitor transient and dynarw® in each area. The WAM is developed to predict the
response of the system [16]. A substation based dynamijgeed deviations/w) of each generator in the system at
state estimator has been used as WAMS in [19] that providia®se instantk + 1 based on speed deviation&) and
abilities to predict instabilities before they occur. Altigh deviation of the reference voltag&{,..¢) (shown in Fig. 3)
these various techniques are being used and developeddbthe generators at time instahtas the inputs. The WAM
wide area monitoring, there are still major challenges @irth is implemented using a CMLP. In WAM developed using a
use for control. These challenges are related to extracti6yILP, each cell is used to predict the speed deviation of
dynamics of the system without knowing the system modeaine generator in the power system. The cells are connected
mining and interpreting huge amount of data available froto each other based on ‘nearestneighbors’ topology,
monitoring devices and assessment of the overall dynamigkich means previous sample outputsnofiearest neighbors
of the system based on wide area information [16]. It is everi each cell are connected to the inputs of that cell. The
bigger challenge to make reliable control decisions und&rearness” is defined as the electrical distance between
real-time constraints. the generators and is measured based on the length of the
transmission lines separating the two generators. In thys

Computational intelligence (Cl) techniques have showmo nearest neighbors are considered for designing the CNN.
promises in the field of wide area monitoring and contrdfor example in Fig. 2, two nearest neighbors of generator
[20]. Since neural networks (NN) can be used to represddfl are generators G2 and G4. This is represented in the
the dynamics of the system by training on the historical da@NN by connecting the outputs of the cells C2 and C4 to the
of the system without having to know its actual model, thepputs of the cell C1. Similarly for G4, two nearest neigtdbor
have shown promises in predictive control applicationssNMire G2 and G3 and hence outputs of the cells C2 and C3
have been successfully implemented as state predictors anel connected to the inputs of the cell C4. This topology
neurocontrollers [21] in the areas of wide area monitoringllows for the scalability of the CNN by keeping the size of
and control. Simultaneous recurrent neural network (SRM) athe MLP in each cell to a minimum. The MLP in each cell
echo state network (ESN) based wide area monitor (WAMpnsists of an input layer with four neurons, a hidden layer
has been demonstrated to be quite effective in performimgth six neurons and an output layer with a single neuron.
predictive neuroidentification of distributed power syste The four inputs to the MLP in each cell consist AW, ; (k)
for the purposes of accurate control [21], [22]. Radial ®asand Aw(k) associated with the generator represented by the
function networks have been used for wide area monitoringll and A& (k) associated with the generators represented by
with an adaptive critic designs based control in [23]. Hogrev the two nearest neighboring cells. The output of the CNN is
these feed-forward and feedback neural network architestuAw(k + 1) of the generator associated with the cell, where
do not scale up to handle the growing complexity of the Smaiktis the sample index of the signal. This is explained in Fig. 2.
Grid for wide area monitoring and control. As the number of
variables increases, the number of neurons in the NN ineseas Fig. 4 shows the implementation of the WAM using a three
and so does the computational complexity. Therefore, it blyered feed-forward MLP for predicting the speed devigio
comes challenging for the NN training algorithms to corsect of the three generators in the two-area four-machine sydtem
learn the non-linear system dynamics. In this study, CML&bnsists of eight neurons in the input layer, 15 neuronsén th
implemented on a hardware platform is presented as a wayhidden layer and four neurons in the output layer, one output
provide scalability in the development of a WAM for Smartepresenting the step-ahead predictions of speed deviftio
Grid in a real-time platform. each generator. The eight inputs to the network are the two
inputs Aw,AV,..¢) going into the WAM from each generator.
I1l. DESIGN OF ACMLP BASED WAM

This study is carried out in three phases. Phase | refers to IV. CMLP TRAINING
the implementation on a non real-time platform (Intel Core Two types of training approaches are carried out depending
2 CPU with 2 GB RAM running at 2.13 GHz programmedn real-time or non real-time studies. In non real-time issid
using MATLAB) where a WAM is developed using acarried out in Phase I, the neural networks are trained enlin
CMLP and compared with that using a multiple-inputsising backpropagation algorithm [25]. In this approach,
multiple-outputs (MIMO) MLP. Phases Il and Il referweights of the neural network are updated after every sample
to the implementation on a real-time platform (160 MHis passed through the network. After all the samples are
TMS320M6701 DSP programmed using C) where a WAMovered, this process is repeated for as many passes through
is developed using a CMLP on a DSP interfaced with thtee network as required to achieve better convergence, as
RTDS. In Phase I, the performance of CMLP is comparezkplained in [25]. Values of various parameters involved in
with an MLP. Fig. 1 shows the three phases of this study ftraining are listed in Table |. The training data is collecte
CMLP implementation. from the test system designed on RSCAD and simulated

on a Real-time Digital Simulator [26]. During the forced

Test system used in the study is the two-area four-machimaining, all of the generators are simultaneously pegdrb

system shown in Fig. 2 [24]. It consists of four generatorsising a pseudo-random binary signal (PRBS) (shown in Fig.
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N B TABLE |
AVrefg, (k) AVrefg,(K) PARAMETERS USED FOR TRAININGMLP
T Trials 50
Number of passes 100

Ny Bagy(K)
AVre(;l(k)//’/ AVref, (k)

/ / G2

Learning Rate /) 0.005
Momentum Gaind) 0.001

Each cell consists of four inputs viz. actual referenceagst
applied to the generatahV,.;(k), actual speed deviation of

// \
. Tom the generatorAw(k) and the predicted speed deviations of
25km — 25m the nearest two generator&wy; (k) and Awi2 (k). For every

1 5 6 al oo 3 sample of the input dat&(k), each cell produces a step-ahead
predicted outpuO(k+1). Therefore, at any input data of size
Fig. 2. CNN based WAM for two-area four-machine system. 1,2,...,k,..., K discrete samples, and/,, andV,, be the

input and output weight matrices respectively of the MLP in

. o nt" cell, then the output of each cell is given by:
5) applied to the excitation system of the generators (shown

in Fig. 3). The deviation of the generator speed as a result of

the PRBS perturbation is recorded along with the reference On(k) = Awy(k)

voltage applied to the generator excitation systexv,( in = F(In(k = 1), Wy (k), V,(k)) 1)
Fig. 3). The MIMO MLP is trained using these two signals

as the inputs. Thus, I,,(k) = [AVietn(k) Awn(k) Adpi(k) Adpa(k)]

uses the predicted output of the previous sample in casesof th
In case of CMLP, each cell is treated as an “object” amikeighboring cellsnl and n2. This helps the parallelization
therefore, all of the cells are simultaneously trained witbf the cell objects, as long as the calculation of each
similar parameters. The parallel training approach of easample output is synchronized among the different cells. In
cell object of the CMLP is explained further. MATLAB, this is achieved by training each cell sequentially
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Fig. 4. Implementation of WAM using MLP for two-area four-mauohi
system.
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Fig. 5. PRBS signals applied to the four generators and sétieg AV, ;.

for every sample. After the output is calculated for each, cel
the weights of each cell is updated before calculating the

box shows the process that can be implemented in parallel
irrespective of the number of cells when a suitable platform
is available.

Initialization:
Input weight matrix: W,
Output weight matrix: V,
n=1k=1,i=1

—» =it

n(k+1) = f(v,em(k),wn(k),im(k),&z(k),vvn(k),vn(k)j

}

Using backpropagation,
calculate AWk and AV

A

n=n+1

Wh(k+1) = Wa(k) + AW,
Vi(k+1) = Vn(k) + AV,

»!

Is n = No_of cells?

Is k = Sample_size?

Fig. 6. Flowchart for training of CMLP using backpropagatio

The real-time study is carried out in two phases. In Phase I,
the CMLP trained using MATLAB is implemented on the DSP
and is used for predicting the speed deviation of the geoierat
in the test system by interfacing with the RTDS. In Phase IlI,
the CMLP implemented on a DSP is trained online similar
to Phase | using similar parameters and approaches. The only
difference in this phase is that the inputs are availableat-r
time and the CMLP sees each input only once as they arrive
(a single pass through the network). This makes learning in
CMLP carried out in Phase Il a much harder problem than
non real-time online training carried out in Phase I.

V. RESULTS ANDDISCUSSIONS

output for the next sample. This process of online trainir@- Phase |
of a CMLP using backpropagation is shown in the flowchart 1) Test System: Two-area four-machine system consisting
of Fig. 6. The part in the flowchart surrounded in darkf four generators is considered as the test system for this



study. This is implemented by a CMLP consisting of four cell
and is compared against a MIMO MLP. Training and testin
data are obtained for different operating points. The ingin
data is obtained foOP;. After the training is complete, it is
tested on three operating poin8P;, OP, and OPs. These
operating points are different to each other in the amount
power transfer between the two areas. Testing data is a
obtained for operating poinOP, by causing a 10-cycle 3-
phase to ground fault on bus 8 of the test system durii
OP; steady state conditions. Similarly, operating painP;

is obtained by causing a line outage on one of the tw
transmission lines between the buses 7 and 8 in the testisyst
The different operating points and their properties arensho
in Table II.

TABLE I
FIVE OPERATING POINTS CONSIDERED IN THE STUDY

OPL, OP;, OP; _OP;, OP;

Coad 1 (MW) 950 556 950

Load 2 (MW) 1650 1469 944

Pareatoareaz (MW)  253.2 3029 80.45
Qurealoareaz (MVAr)  22.68 572  -38.02
Per (MW) 705.6 5738 5795
Qa1 (MVar) 1635 1172 53.89
Pes (MW) 7055 537.7 579.0
Qa2 (MVar) 296 2346 81.12
Pez (MW) 4415 3005 3144
Qa3 (MVar) 68.8 4979 3156
Pea (MW) 705.6 537.7 578.6
Qca (MVar) 169.8 1401 -59.53

Fig. 7 shows the convergence diagram for the four outputs
the MIMO MLP. Similar convergence diagram for the CMLF
is shown in Fig. 8. These diagrams show how the mei
squared error (MSE) between the actual and the predict
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Fig. 7. Convergence of individual outputs of the MIMO MLP ihgr training.
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outputs decreases over multiple passes of the training dawa

through the network. The testing outputs obtained from theg g

CMLP for the five operating points are shown in Figs. 9 to
13. The comparison of absolute errors obtained using ML~
and CMLP forOP, to OP; are shown in Figs. 14 to 18,
respectively. The average and standard deviation of thexme
absolute error (MAE) obtained by the two networks durin
testing on five operating points over 50 trials are shown

Table IlI.

Awl (pu)

Amz (pu)

B. Phase Il

In this phase, the CMLP trained in Phase | using MATLAE
is implemented on a DSP by initializing the trained weight: 5
This network is then used to predict the outputs (speP:%
deviation of the generators of the test system) generated ;
the power system simulated on the RTDS in real-time. Ti
outputs of four cells of CMLP represent the speed deviatiol o
of four generators and are shown in Fig. 19. During th=
time when the CMLP on the DSP is predicting the output :
operating points are varied by causing a 10-cycle 3-phase |
to ground fault OP,;) and transmission line outage on the
system QPs). The predicted outputs of the CMLP compared

5

0

-5

Time (s)

Fig. 9. Testing output of CMLP for operating point I.



TABLE Il
COMPARISON OFMLP AND CMLP FOR DIFFERENT OPERATING POINTS INPHASE |

Gl G2 G3 G4
MLP CMLP MLP CMLP MLP CMLP MLP CMLP
oP, Avg. 0.010533 0.011064 0.012169 0.013711 0.010201 0.009517 0.013105 0.010210
Std. 0.000225 0.000202 0.000491 0.000587 0.000499 0.000088 0.000431 0.000242
OPs Avg. 0.012927 0.008843 0.014253 0.011057 0.015672 0.016951 0.019904 0.013778
Std. 0.000560 0.000330 0.000638 0.001145 0.001045 0.000227 0.000825 0.000245
OPs Avg. 0.013716 0.012222 0.014582 0.013466 0.013608 0.011166 0.013869 0.011375
Std.  0.000050 0.000252 0.000145 0.000626 0.000521 0.000135 0.000320 0.000130
OP, Avg. 0.003171 0.001850 0.006353 0.005029 0.007390 0.001142 0.008319 0.002843
Std.  0.000069 0.000152 0.000155 0.000638 0.000122 0.000023 0.000737 0.000213
OPs Avg. 0.002383 0.004535 0.003849 0.002275 0.002516 0.001739 0.008739 0.006740
Std.  0.000581 0.000649 0.000358 0.000814 0.000590 0.000084 0.000467 0.000322
Winner 1 4 1 4 1 4 0 5
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Fig. 10. Testing output of CMLP for operating point II.
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with the actual outputs for these tests are shown in Figs.
and Figs. 21.

@aline training.

D. Result Analysis

C. Phase Il Learning in CNN is a challenging task because of their
Phase Il is a combination of the other two phases. In thi®nnectivity. Since the predicted output from one cell isdis
phase, a CMLP is developed on a DSP using C programmiag input(s) to other neighboring cell(s), errors due to poor
language and is interfaced with the RTDS where the teshining and hence false predictions of the NN in one cell can

system is simulated. The set up is similar to Phase | excejgple through all of the cells and deteriorate the perfaroga
that the inputs to the DSP in this study are fed in real-timef the CNN. On the other hand it is also arguable that the
from the output of the RTDS. The CMLP developed in DSRINs get trained even better due to the connectivity because
is trained in real-time to predict the speed deviations ef thhe errors propagate through the network and each cell is
generators of the test system. The weights of the CMLltRained actively (through its own training) and passively
are continuously updated after each sample of the input(ithrough the training of its neighbors) as training alduorit
received and the whole training process and prediction as each cell tries to minimize the error at its output. This
completed before the next sample arrives. The results showay, knowledge of the actual dynamics of the system is
in Fig. 22 show the outputs of the CMLP during the real-timpreserved not only on the individual neural networks at each
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cell, but also on the connectivity between the differentscel
of the CNN during training. Moreover, the advantage of CNN
comes from its ability to scale up to a much larger system
without significant impact on the performance. When the
size of the network grows, the number of cells increases but
the size of an MLP on each cell remains the same (as long
as the nearest-topology remains the same). For a CMLP
with m cells with each cell having an MLP witivV weights,

the total number of weights in the network isN. This is

in contrast to a MIMO MLP where the number of neurons
in the hidden layer needs to be increased significantly in
order to obtain a satisfactory performance when the number
of inputs and outputs increases. This causes the number of
weights in an MLP to increase drastically as the size of the
network grows, thus increasing the computational compjexi
leading to poor training and testing results. Howeverntraj
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