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Abstract. The transition from evolutionary computation to computa-
tional evolution will require an increase in the biological realism of to-
day’s nature-inspired algorithms. Ecological competition and conditional
dispersal are two ubiquitous forces of natural systems that offer the po-
tential to contribute to this transition. However, in order to effectively
incorporate these two features into evolutionary algorithms, their inter-
play must first be understood in a theoretical context. Here, I extend
an established model of ecological competition to include conditional
dispersal and analyze the evolutionary dynamics of phenotypic diversifi-
cation. I then discuss how these results can be used to guide the design
of evolutionary algorithms that incorporate ecological competition and
conditional dispersal, as a step toward computational evolution.

1 Introduction

In their recent perspective article, Banzhaf et al. [1] call for a “more sophisticated
dialogue between computational and natural scientists about evolution” in order
to address “previously unimaginable or intractable computational and biological
problems.” Their article points out that the state of the art in evolutionary al-
gorithms lags far behind our current understanding of natural evolving systems,
and argues that the inclusion of more biological and ecological realism could
greatly improve the search performance and applicability of nature-inspired opti-
mization algorithms. Moreover, it discusses the potential utility of incorporating
spatially-explicit ecological interactions, environmental sensing, and repertoire
exploitation into population-based optimization methods. These additions offer
the potential to increase system evolvability, by facilitating the emergence of
novel genetic combinations and better maintaining genetic diversity. This new
class of algorithms is referred to as computational evolution, a novel paradigm
of computational science that could greatly improve the breadth of problem do-
mains to which nature-inspired optimization algorithms are applied and provide
natural scientists with better tools for performing evolutionary and ecological
experiments in silico.



Spatial interactions are often included in evolutionary algorithms by map-
ping individuals onto the vertices of a network and restricting inter-individual
interactions to occur between individuals that share an edge in the network.
Such cellular evolutionary algorithms (cEA) typically employ some form of local
selection, where parents are selected based on their fitness from within some
spatially localized neighborhood. However, to the best of my knowledge, ecologi-
cal interactions between individuals, such as phenotype-dependent competition,
have not yet been considered in the context of cEAs. In natural systems, eco-
logical interactions abound, affecting population diversity and the emergence of
novel species [2,3]. Further, cEA’s typically assume that individuals are com-
pletely sessile, and cannot disperse from their spatial location during their life
cycle. In natural populations, dispersal is ubiquitous and a force of paramount
importance, influencing species abundances and distributions, population dy-
namics, and population-level responses to environmental perturbations [4,5,6].
Recent results have demonstrated that dispersal rates are often contingent on
local environmental cues. This is referred to as conditional dispersal, a strat-
egy that has been observed in numerous species. For example, dispersal rates in
the collared flycatcher Ficedula albicollis increase when local offspring quality or
quantity decreases [7]; in the butterfly Melitaea cinzia, dispersal rates increase
when local conspecific density increases [8]; and in the nematode Caenorhabditis
elegans, dispersal rates increase in the face of strong environmental fluctuations
[9]. As conditional dispersal employs environmental sensing, it also allows for
repertoire exploitation, where individuals can effectively ‘remember’ old environ-
mental conditions, so they can respond appropriately when they are encountered
again. In addition to ecological interactions and conditional dispersal, these are
two generic features of computational evolution [1] that offer the potential to
improve the performance of cEAs.

While ecological interactions and conditional dispersal may bring evolution-
ary algorithms closer to computational evolution, the interplay of these two
features in natural systems is still not fully understood. Indeed, the majority
of theoretical models of dispersal ignore phenotypic competition altogether, and
assume that individuals disperse unconditionally, without regard to local envi-
ronmental conditions. In order to effectively incorporate ecological interactions
and conditional dispersal into evolutionary algorithms, their coupling must first
be understood in the context of natural systems.

To this end, I extend an established spatially-explicit model of ecological com-
petition [2,3] to include conditional dispersal. Beginning with a monomorphic
ancestral population, I determine the parameter regions in which phenotypic
diversification occurs and monitor the evolutionary dynamics of the dispersal
characters.! I conclude with a discussion on how these results may guide the
inclusion of ecological interactions and conditional dispersal into evolutionary
algorithms, as a step toward computational evolution.

! The methods and results presented herein are deliberately terse and obfuscated, so
as to avoid any copyright conflicts that may occur when the extended version of this
article is submitted for publication.



2 Methods

I consider a spatially-explicit, individual-based birth-death process in continu-
ous time. Individuals are described by their spatial location (x,y) in the unit
square, ecological character u, and conditional dispersal character (v*,v¥). The
ecological character u is used to denote a morphological, behavioral, or physio-
logical trait. The two-dimensional character (v*,vY) is used to parametrize the
individual’s conditional dispersal function, which I assume takes the form of a
step function. All characters are kept in the range [0, 1], except for the dispersal
character v”, whose upper limit is left unbounded.

The fitness, birth rates, and death rates of individuals, as well as the schedule
of birth and death events, are as described in [2,3]. In short, the birth and death
events occur asynchronously and in proportion to the population-level birth and
death rates. The intensity of both spatial and phenotypic competition follow a
Gaussian, such that the strength of competition between any two individuals
increases as either spatial or phenotypic distance decreases. Thus competition
is more intense between either phenotypically similar and/or spatially proximal
individuals. There exists an optimal ecological character that yields maximal
carrying capacity, and carrying capacity decays according to a Gaussian as the
ecological character deviates from this optimum [2].

We consider asexual reproduction. In a reproduction event, the phenotype
(u,v*,v¥) is inherited faithfully from parent to offspring, but is subjected to
Gaussian mutation. The inherited dispersal characters (v®,v¥) are used to dis-
place the offspring from the parent’s spatial position. The distance an offspring
disperses is conditioned on local environmental quality, defined as the individ-
ual’s death rate d. Conditional dispersal is assumed to take the form of a step
function. The threshold of the step function is encoded in v® and its height in v¥.
The response of an individual conditional dispersal function to its environmental
cue d is
0, ifd<o®

vY, otherwise

oa(v®,vY,d) = { (1)
This response is used as the standard deviation of a Gaussian distribution with
mean zero, from which a dispersal step (Az, Ay) is drawn. The disperser is then
given the spatial coordinates (z; + Ax,y; + Ay).

3 Experimental Design

The model is parameterized by the widths of three Guassian kernels: the carry-
ing capacity, spatial competition, and phenotypic competition functions. In this
study, we hold the width of the carrying capacity function fixed at o = 0.3, the
width of the spatial competition function fixed at o5 = 0.2, and systematically
vary the width of the competition function within the range 0.1 < o, < 0.6.
The ecological character is initialzied at the value that maximizes carrying
capacity v = 0.5, and the dispersal characters are initialized at v* = 0.7 and



v¥ = 0.1. For each value of o., we run 10 independent simulations. In each
simulation, we allow the population to evolve for 80, 000 generations and measure
the evolutionary dynamics of the phenotypic traits.

4 Results

In line with the non-spatial case [2], phenotypic diversification was observed
whenever the width of the competition kernel was less than the width of the car-
rying capacity kernel (0. < ok). In Figure 1, I depict the evolutionary dynamics
of the phenotypic character u for three Gaussian competition kernels. Note that
phenotypic diversification only occurs when o. < 0.3.

For all values of o. considered, the dispersal threshold v* evolved toward the
population-level average death rate, d = 1 (Figure 2). This implies that evolution
favored conditional dispersal strategies with sessile behavior in low-competition
environments and dispersive behavior in high-competition environments.

5 Discussion

I have investigated a spatially-explicit, individual-based model of phenotypic
evolution that includes ecological competition and conditional dispersal. This
model has revealed that conditional dispersal does not interfere with phenotypic
diversification when reproduction is asexual and that selection favors dispersal
strategies in which individuals emigrate from high-competition environments.

This study provides a theoretical basis for the inclusion of ecological interac-
tions and conditional dispersal in evolutionary algorithms, as a step toward com-
putational evolution. The two main insights are: (i) for a Gaussian phenotypic
competition function to promote diversification, it must possess a narrow kernel
width and (ii) it is possible to include conditional dispersal without impeding
the diversification process, so long as reproduction is asexual, as in evolutionary
strategies.

To incorporate ecological competition into evolutionary algorithms, individ-
ual fitness could be discounted in proportion to the individual’s phenotypic sim-
ilarity with spatially adjacent individuals. This form of competition is similar
to niching [10], which has been shown to maintain subpopulations on multiple
fitness optima, and improve the exploratory power of population-based opti-
mization. While traditional niching methods only consider phenotypic similarity
and ignore spatial proximity, it is well known that imposing constraints on the
spatial scale of interaction events facilitates the emergence of evolutionary phe-
nomena that would be otherwise impossible in globally interacting systems (e.g.,
[11]12][13]). Therefore, phenotypic competition should occur at a local spatial
scale, and may provide a simple and novel mechanism for the formation and
maintenance of population diversity, as a means to increase system evolvability.

The degree of local phenotypic competition could be used as an environmen-
tal cue for conditional dispersal. This would endow individuals with environ-
mental sensing, allowing them to escape hostile conditions. Since these condi-
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Fig. 1. Evolutionary dynamics of the ecological character u for three Gaussian compe-
tition kernels: (top) o. = 0.1, (middle) o. = 0.2, and (bottom) o. = 0.3.
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Fig. 2. Evolutionary dynamics of the dispersal threshold v* for o. = 0.6. The horizontal
line represents the population-level average death rate, d = 1.

tional dispersal functions may be encoded in the genome, they will be under
selective pressure, and individuals will consequently be endowed with repertoire
exploitation, allowing them to respond effectively to previously encountered en-
vironments and extrapolate their experiences to respond to new environmental
conditions. Since dispersal is conditioned on the local environment, which is in
turn affected by dispersal events, conditional dispersal provides an opportunity
for feedback loops, which are, along with environmental sensing and repertoire
exploitation, important features of computational evolution [1].
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