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1 Introduction
Detecting and fixing software bugs remains a major burden for the programmers even after the project is released.
Despite promising results and efforts in developing automated debugging techniques, these methods still rely on results
from rigorous automated testings to locate the errors and require manual modifications from the programmers to fix
bugs [3].

We propose an Evolutionary Computing (EC) [5] based approach to automate the task of repairing program bugs
in existing software. Programs are evolved and evaluated until one is found that retains the functionality of the original
program and fixes the bug that occurred. We first process the source code of the program to produce a path containing
traces of execution procedures. This allows us to obtain a negative execution path when an error occurs which contains
the list of executed statements. Next, our EC algorithm creates new programs by modifying the original code with
more bias toward statements that occurred during the negative execution path. Additional tests are incorporated into
the fitness function to retain the functionalities of the program.

To accomplish the goal of full automation of the bug repair process, we must automatically detect likely bugs.
We propose to use anomaly detection techniques for this component of the project. Anomaly detection uses program
execution history to determine what behavior is normal, and thus should be preserved, and what behavior is anomalous,
and should be repaired. To be successful, we must detect and repair bugs without foreknowledge and in a timely
manner, and repair activities must disrupt services only minimally.

2 Preliminary Work
Our GP program [6, 15] evolves and evaluates program until one is found that retains the functionality of the original
program and fixes the bug that occurred. We first process the source code of the program to produce a path containing
traces of execution procedures. This allows us to obtain a negative execution path when an error occurs which contains
the list of executed statements. Next, the GP algorithm creates new programs by modifying the original code with
more bias toward statements that occurred during the negative execution path. Additional tests are incorporated into
the fitness function to retain the functionalities of the program.

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 }
10 else {
11 days -= 365;
12 year += 1;
13 }
14 }
15 printf("year is %d\n", year);
16 }

Figure 1: Zunebug: infinite loop on the last day
of leap year (i.e., when the days variable has value
366)

Figure 1 shows a code fragment of the embarrassing bug causing
Microsoft Zune media players to freeze on December 31st, 2008 [4].
Throughout this section we refer to this example to to illustrate the
important design decisions in our proposed approach. The repair for
Zunebug created by our approach is shown in Figure 2.1.

2.1 Preprocessing
To obtain the execution path, we use the C Intermediate Toolkit [11]
to assign unique ID’s to statements in a C program source file. An ex-
ecution path is a record of statement ID’s that were called when the
program runs against some inputs or testcases. We define a positive
testcase as one that results in expected behavior, e.g., zunebug(365),
zunebug(1000) and a negative testcase as one that causes an error,
e.g, zunebug(366), zunebug(10593). One of the key ideas in our ap-
proach is to focus on the regions where the error occurs. To do this
we assign a weight w to statements occurring in the negative execu-
tion path (e.g., lines 1−9 using the negative testcase zunebug(366)).
In addition, we also prefer lines that are unique,i.e., only happen in
the negative execution path and not on the positive one. To preserve
the contents of the original program, we hash its statements into a code repository called C-Bank (Figure 2) and evolve
new programs from there.

2.2 Evolution Compution
Our Software Repair using Evolutionary Computing (SREC) algorithm ollows the traditional Evolutionary Algorithm
structure. The algorithm maintains a population of chromosomes (programs), selects a pool of individuals based on
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Lines Statement
4 int isLeapYear(int){ ... }

6 days -= 366 ;

7 year += 1 ;

5-8 if (days > 366){...}

11 days -= 365 ;

12 year += 1 ;

4-13 if isLeapYear(year){...} else{...}

3-14 while(days > 365){...}

2 int year = 1980;

15 printf("current year is %d\n", year);

Figure 2: Code-Bank for zunebug

their fitness, and modifies them with mutation and recombination operators. The program stops upon reaching a
terminating criterion.

1 void zunebug_repair(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 // days -= 366;//deletes
7 year += 1;
8 }
9 days -= 366;//inserts
10 } else {
11 days -= 365;
12 year += 1;
13 }
14 }
15 printf("year is %d\n", year);
16 }

Figure 3: The final Zunebug repair after minimiza-
tion executes the statement days -= 366; when
year is a leap year, thus guarantees termination to
the loop.

The fitness function takes a program source code, compiles it,
and runs against the set of positive and negative testcases. Finally it
returns a score indicating the acceptability of that program. The neg-
ative test reproduces the bug in the original program that needs to be
fixed and the positive testcases preserve the core functionalities of the
program. The fitness score of a program is the weighted sum of the
testcases that the program passes. We assign the fitness score of zero
to programs that do not compile and those with runtime exceeding a
preset time threshold (e.g., five seconds).

A subset of the population is selected for reproduction using ei-
ther stochastic universal sampling or tournament selection. Those
with fitness scores equal to or less than zero are immediately ex-
cluded. From here we have a mating pool ready to be modified by
the recombination and mutation genetic operations.

Our first recombination method adheres to the conventional 1-
point crossover in EC strategies by exchanging a statement from one
parent with another. Our representation of the program allows a state-
ment to contain sub-statements, e.g., conditional and loop code con-
tains all statements within that code block. These statements are cho-
sen uniformly at random regardless of their weights w.

Our second implementation called crossback preserves the contents of the original program and concentrates on
regions in the negative execution path. A single cutoff point c is chosen randomly for both input parents. Then all
statements with ID’s larger than c are selected for recombination based on their weight values w. The contents of the
selected statement s from both parents are replaced by the contents of statement s in the code repository.

We consider each statement in the negative execution path for mutation with more bias toward those with heavier
weights. The selected statement s is modified with one of the three operations: delete the contents of s, replace the
contents of s with another one from code bank, or insert a statement from the code bank after s.

The algorithm terminates when an acceptable solution (i.e., one passing all the testcases) is found or it has ex-
ceeded the maximum number of preset generations.

2.3 Bloat control and Other Optimizations
Unlike traditional code evolving methods such as Genetic Programming, our EC approach does not suffer from code
bloats due to several reasons. The algorithm does not add additional nodes (or branches) to existing structure. Inserting
a statement j to statement i appends j to i, i.e., i = {i; j}, but does not separate i and j into two distinct nodes.
Moreover, SREC evolves programs very similar to the original by limiting the modifications to regions in the negative
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Types of Stmts/ Pos/Neg Negative Success Rate
Program Version Bug LoC Testcases Path Weight crossover crossback size
zune example Infinite loop 14 / 28 5/2 1.1 58% 71% 4
uniq ultrix 4.3 Segfault 81 /1146 5/1 81.5 100% 100% 4
look-u ultrix 4.3 Segfault 90 /1169 5/1 213.0 100% 99% 11
look-s svr4.0 1.1 Infinite loop 100 /1363 5/1 32.4 100% 100% 3
units svr4.0 1.1 Segfault 240 /1504 5/1 2159.7 5% 7% 4
deroff ultrix 4.3 Segfault 1604 /2236 5/1 251.4 97% 97% 3
indent 1.9.1 Infinite loop 2022 /9906 5/1 1435.9 34% 7% 2
flex 2.5.4a Segfault 3635 /18775 5/1 3836.6 4% 5% 3
atris 1.0.6 Buffer exploit 6470 /21553 2/1 34.0 82% 82% 3

Figure 4: Experimental Results

execution path and only uses code from the original program. The selection routine also disregards non-working
programs. Hence, programs that are not well-formed or deviate greatly from the original have a low chance of being
selected. Finally our EC process stops when a candidate passes all the testcases, it doesn’t keep evolving to find better
solutions.

To improve the performance of our algorithm, we cache the program (its md5sum result) and the associated fitness
score. Only programs not in the cache are evaluated by the fitness function.

In addition, we apply ideas from structural differencing [1] algorithms and delta debugging [16] to minimize the
repair found. Our technique generates a 1-minimal patch that, when applied to the original program, repairs the defect
without sacrificing required functionality.

2.4 Experimental Results
Table 4 provides the information on programs that are successfully repaired with SREC. For each program, we run the
algorithm for 100 trials using two mutation parameters 0.06 and 0.03. If the first parameter does not work (i.e., gives
no repair), the second parameter is used. Column “Stmt/LoC” gives the approximate size of the test programs in terms
of number of statements and lines of code. The “Pos/Neg Testcases” column lists the number of positive and negatve
testcases used. The “Negative Path Weight” column gives the weighted length of the negative execution path. The last
three columns provide statistics when running SREC on these test programs. Columns “crossover” and “crossback”
respectively show the success rates of SREC when using different recombination methods. Finally, the “size” column
shows the difference in lines of code between the original program and the repair found.

Overall, our algorithm has successfully fixed defects in more than ten programs, including security vulnerabilities
in lighthttpd, nullhttpd (opensource webservers), openldap (opensource directory server), and wu-ftpd (an ftp server).
The success of finding a patch ranges from 4% to 100% with average running time ranging from half a second to ten
minutes. The details and statistics of these results can be found in other publications [6, 15, 7].

2.5 Discussions
The two major genetic operators in EC, crossover and mutation, have innovative implementations in our prototype.
Our crossover operator crosses individuals in the current generation back with the original (defective) program. Our
mutation operator applies several macro-mutations to statements along the execution path. In preliminary GP results,
we observed that both crossover and mutation operators play an important role in discovering a successful repair. We
want to understand in detail what contributes to the success of the GP process. Moreover, our initial designs were
based on several hypothesis (e.g., focusing the fixes on statements occurred in execution path is the key to reduce the
search space of the algorithm) and we would like to verify and improve upon these thoughts.

2.5.1 The Role of Crossover

Crossover is an important search operator in GP, creating new individuals by recombining partial solutions (subtrees)
from individuals. The original implementation (described above) does not take advantage of the potential power of
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crossover because individuals are always crossed back to the original parent program. In Table 4 we report data com-
paring the performance of this implementation with a traditional GP crossover operator, which takes two individuals
as input, chooses a random position (i.e., statement) from each one, swaps their contents, and returns two new chromo-
somes. We note that this implementation doesn’t take advantage of the statements occured in the negative execution
path.

Although the data are not conclusive, the two implementations appear to be comparable: each outperforms the
other in some instances. A potential explanation of these results is that crossover is not contributing enough to the
search for it to matter, regardless of which version we use.

2.5.2 Varying the Number of Test Cases

The results in Table 4 typically involve six test cases. limiting the fitness function to six discrete values. This could
limit the complexity of repair that can be evolved as it provides a relatively coarse signal to GP. Also, programs may
have more critical functionality than a few test cases can capture. Typically, programs have too many test cases rather
than too few, and test case selection and time-aware test suite prioritization are active research areas (e.g., [14]).

In this section, we ask how GP performance changes when more test cases is used. We did and experiments with
70 distinct trials on the Zune bug, using a fitness function with 24 test cases: 20 positive test cases and 4 negative test
cases. represent one standard deviation.

Ideally, the test cases would be independent. In this case they were selected by taking the original five (which
were 1000, 2000, 3000, 4000, and 5000) and adding the following: one arbitrary negative number (-100); one negative
number that if it were positive would cause the program to hang (-366); one extremely large number (100000000);
selecting several arbitrary numbers near leap years and then finding the numbers around those dates that exercise the
bugs. The four negative testcases include the original bug (that caused all the zunes to crash in December) as well as
several other leap years: 1980 (i.e., day 366), 1984, and 2012.

Unsurprisingly, early generations have fitness values with high variance, and in later generations the variance
decreases. The original program passes the positive test cases but fails the negative test cases; it thus has a fitness
of 20. Note that over all generations, the average fitness is below the baseline of 20, indicating that the majority of
individuals are worse than the original program. Thus, the primary repair is discovered by first losing fitness and then
regaining it on the way to the global optimum.

Intuitively, additional test cases could reduce success rate by overly constraining the search space. However, the
opposite happened in this example. Using seven test cases, the average success rate is 72%, while the average success
rate using 24 test cases is 75%. However, adding test cases does dramatically increase the total running time of the
algorithm: with seven test cases, the average time to discover the primary repair is 56.1 seconds; with 24, this time
increases to 641.0 seconds. This makes sense: Every fitness evaluation potentially involves running all of the test
cases. Therefore, in general, we prefer a fitness function with a small number of test cases.

3 Closed-Loop System
To accomplish the goal of full automation of the bug repair process, we must automatically detect likely bugs. We
use anomaly detection techniques for this part of the research. Anomaly detection uses program execution history to
determine what behavior is normal, and thus should be preserved, and what behavior is anomalous, and should be
repaired. To be successful, we must detect and repair bugs without foreknowledge and in a timely manner, and repair
activities must disrupt normal services only minimally.

We restrict the scope of this part with security vulnerabilities of webservers, an area where defects are common and
can have serious consequences. For the experiments, we adopted an intrusion-detection system (IDS) developed by
Ingham et al[9, 10], which uses a probabilistic finite state machine approach to detect suspicious HTTP requests. The
alphabet of the state machine includes a set of tokens, or features, describing a request (e.g., hostname, file path, client
IP address). In the training phase, legitimate requests are used to construct a finite state machine model of normal
requests. Ideally, the language of the machine includes all legitimate requests and no malicious ones.

Once the model has been constructed, it is then used in the testing phase to classify new HTTP requests. Intuitively,
a new request is labeled as normal if it is in the language of the state machine and is labeled suspicious if it is rejected
by the state machine. State machine path compression and generalization are used to improve performance and the
models tolerance of new requests. In addition, edge weights allow the model to produce probabilistic outputs rather
than a binary classification.
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Detected anomalies are treated as negative testcases and passed to our repair system. We focus our experiments
on the open-source webservers including Lighttpd. In this section we give details on our methods and experimental
results.

3.1 Experiments Setup
Training data: We first collect common webserver bugs (e.g., code injection, non-control data attacks, DOS), starting
with the collections provided by[10] which contains over 65 attacks spanning 8 operating system and 13 different
servers. In addition, we obtained workloads from the University of Virginia Computer Science department web-
server. To evaluate repairs to the basic webservers, (nullhttpd and lighttpd) we used an indicative 14-hour period from
November 11, 2008 involving 138,226 HTTP requests spanning 12,743 distinct client IP addresses.

We trained the IDS system on 534109 requests collected from various websites. This training data set has not
been filtered and might contain anomalous requests, and thus the model may mistakenly accept the similar anomalous
requests. The training process, which need only be done once, took 528 seconds on a machine with quad-core 2.8
GHz and 8GB of RAM. The resulting system assigned a score to each incoming request ranging from 0.0 (definitely
anomalous) to 1.0 (definitely normal). On our testing workload, the IDS has no false negatives with a threshold of
0.02: it successfully detects the publicly available nullhttpd and lighttpd exploits below as anomalous and does not
flag any other requests. Details of the exploits and repairs for nullhttpd and lightted are listed in next section.

3.2 Detecting and Repairing Security Exploits
3.2.1 lighttpd exploit: heap buffer overflow

POST / HTTP/1.0
Content-Length: -800

\195\171
--netric--1\195\1281\195\1551\195\1371\195\146... // more shell code

This exploit in Lighttpd mod fastcgi1 attempts to retrieve the contents of /etc/passwd to the attacker. The problem
lies in the fcgi env add routine, which uses memcpy to assign data to a buffer pointer without proper bounds checks.

A proper fix would be do a check on memory violation before calling the memcpy function, however recall that
our repair system does only reuses code in the existing program, thus if there is no application memory checking code
in the program, then this fix won’t be used. Instead the repair modifies a bound check inside fcgi create env (which
calls the fcgi env add routine), changing the statement:

off_t weWant = req_cq->bytes_in - offset > FCGI_MAX_LENGTH
? FCGI_MAX_LENGTH : req_cq->bytes_in - offset;

This effectively prevents the large data from being sent to the script interpreter process causing the bufer overflow
while still allowing the good (positive) requests to go through. Generating the repair took less than a minute with the
repair system.

3.2.2 nullhttpd exploit: remote heap buffer overflow

conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, sizeof(char));
pPostData=conn[sid].PostData;
...
do {

rc=recv(conn[sid].socket, pPostData, 1024, 0); /* buffer overflow! */
...
pPostData+=rc;

} while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

1http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-4727
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This public exploit in Nullhttpd v.0.5.0 2 attempts to give the running server a buffer overflow which then crashes
the system. The problem lies in the ReadPostData() routine where the value in in ContentLength is supplied by the
attacker which causes conn[sid].PostData to overflow. Fortunately there is another place in the code where this Post-
data copy has proper memory bound check thus allows the repair system to reuse (with some additional modifications).
Generating the repair takes approximately four minutes which more than half of the time are used to exercise the
testcases to make sure the modified code still retain its original functionalities.

3.3 Realtime Deployment
In the architecture proposed in Section 4, the repair process generates an entirely new executable. In practice, it might
be desirable to apply a patch to a running executable without halting and restarting the system. The dynamic patching
problem is well-studied [2], and many existing solutions are applicable here. In a security setting, however, software
dynamic translation (SDT) systems such as STRATA [13] can be used to perform the patching. In such a system,
all instructions are translated and stored in a run-time code cache before being executed; the SDT can be directed
to flush relevant portions of the cache (on a per-function basis) and refill them from the code segment of a second
binary image. Software dynamic translation dovetails particularly well with our approach, since it can be used to
detect certain intrusions (e.g., via low-overhead instruction set randomization [8]), record the statements visited for
the weighted path, sandbox the variants for testing [12] and deploy the resulting repair. Although we have not yet
tested run-time repairs, we are working on it and are optimistic that the setup and implementation will be available
soon.

4 Summary
After more than 30 years of research in software engineering and programming languages, software is still to a large
extent developed, debugged, maintained, and tested by humans. At the same time, the size of our software base
continues to grow, the complexity of the environments in which software runs has increased dramatically, and we
expect ever greater functionality out of our software. As a consequence, software today is in many ways less reliable
and more prone to bugs than it was a decade ago.

While there are many approaches for automatically detecting and locating security vulnerabilities, less atten- tion
has been paid to their automatic repair. Our work give a preliminary implementation of a closed-loop architecture for
repairing real security vulnerabilities in off-the-shelf security-critical applications. Our basic repair technique is based
on genetic programming. It uses a weighted path to restrict modifications to areas of the program likely to contain
the bug. It uses positive and negative test cases to encode required functionality and to demonstrate the attack. We
combine this automated repair with anomaly detection to turn attacks in to negative test cases, allowing programs
with standard regression tests to be repaired automatically. We empirically evaluated, on large indicative workloads
applied to full systems, the cost of crafting the repair, the costs of repairs that sacrifice functionality, and the costs of
anomaly detection false positives that lead to unneeded repairs. Our results indicate that low-quality repairs caused by
insufficient test suites are a cause for concern, while false positive repairs typically have negligible effect. Our primary
result, however, is the demonstration of six automatic repairs on 100K lines of server code for five types of security
vulnerabilities: remote heap buffer overflow, non-overflow denial of service, format string vulnerability, local stack
buffer overflow, and integer overflow.

2http://nvd.nist.gov/nvd.cfm?cvename=CVE-2002-1496
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