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Abstract:  

The smart grid enables us to integrate, interface with and intelligently control the conventional as well 

as renewable energy resources. The conventional controllers are no longer capable to handle the 

complexity of smart grids because they are local and non-coordinated controllers. Therefore, wide-area 

monitoring and control has become important in smart grid related research. In recent years, Adaptive 

Critic Design (ACD) based optimal wide-area neurocontroller has been proven effective to improve the 

stability of power systems. But, Multi-Layered Perceptron which is generally used in the framework of 

adaptive critic does not actually represent the structure and function of biological neural networks. The 

artificial neural network designed to more closely model the behavior of the biological neural network is 

known as Spiking Neural Network (SNN). The objective of this research is to design an ACD based wide 

area controller for a smart grid including a wind farm and six plug-in electric vehicle parking lots. Inside 

the ACD based controller, the model network is replaced by the SNN. The performance of the controller 

is evaluated in real-time with Real Time Digital Simulator (RTDS) and DSP based experimental setup. 

 

Introduction: 

With the advent of twenty-first century, the limitations of traditional power grids are being revealed 

day by day. They are lacking in efficiency, reliability, security and above all they are not environment-

friendly. Therefore the thrust of the global research has been shifted to a new concept of power grid 

which is referred as „the smart grid‟. The smart grid encompasses the technology that enables us to 

integrate, interface with and intelligently control the conventional as well as renewable energy sources 

like wind farms, solar farms, and the plug-in electric vehicles (PEV) [1].  But, the operational problems 

originated due to the addition of intermittent sources like wind farms and the congestions created by the 

charging load of the PEVs are the biggest challenge to the smart grids [2].  

The standard power system controllers are no longer capable to handle these problems because; in 

most cases they are local non-coordinated controllers and try to achieve a local optimal performance but 

have little or no information about the entire system performance. Even, sometimes, the interactions 

between these local controllers create adverse effects on the system [3]. These are the reasons why the 

wide-area monitoring and control (WAMC) is becoming so important in smart grid related research. 

WAMC has shown significant improvement in damping inter-area oscillations by providing external 

control signals to the power system stabilizers (PSSs) and different FACTS devices like static VAR 

compensators (SVC), thyristor-controlled series capacitor (TCSC), unified power flow controller (UPFC) 

and static compensator (STATCOM) [4]-[7].  

The main problem with the classical wide area controllers is that they need a detailed model of the 

system linearized around a nominal operating point. But with power electronics based devices, it is very 

difficult to obtain a linearized model of a large system. Also, the operating point for a large power system 



is never constant. Due to these reasons, potential of the intelligent nonlinear controllers, which are less 

sensitive to operating points, are being investigated by many researchers. Among different intelligent 

techniques, Neural Network has shown its promise in the area of control of power systems as well as the 

FACTS devices [8]-[9]. But, most of the neural network based controllers are suboptimal controllers and 

hence provide no guarantee about the system stability unconditionally. In recent years, Adaptive Critic 

Design (ACD) based optimal wide-area neurocontroller has been proven effective to improve the stability 

of power systems [10]-[12].  

Generally, the basic structure of the neural networks used so far in the framework of adaptive critic is 

Multi-Layered Perceptron (MLP). But with the advancement of neuroscience it has become clear to the 

researchers that MLP does not actually represent the structure and function of biological neural networks 

[13]. A traditional neuron in MLP uses weighted multipliers and simple summation to generate a net input 

value for an activation function, whose output is the neuron‟s output. Whereas, a biological neuron 

receives the fast action potential spikes, which drive up the voltage on its main body‟s membrane. The 

voltage on the main body (called the “soma”) decays quickly, but if enough spikes arrive (usually from 

multiple neurons) in a short enough period of time, the biological neuron fires [14]. The artificial neuron 

designed to more closely model those found in nature is known as a Spiking Neuron, and a network based 

upon them is called Spiking Neural Network (SNN). Theoretically, due to the close similarity with the 

biological neural network, the scalability and processing speed of SNN should be much higher than 

conventional MLPs. Recently the SNN has been proven effective in function approximations and 

neuroidentification [13]-[15], but its potential in neurocontrol is not yet explored. This research will be 

the first attempt to investigate the potential of SNN in optimal neurocontrol with ACD.  

The objective of this summer research is to design an ACD based wide area controller for a smart grid 

including a wind farm and six PEV parking lots. The goal of the controller will be: a) to improve the fault 

tolerance of the system, b) to coordinate the reactive power supplied by the wind farm and the PEVs to 

improve the voltage stability of the system. Inside the ACD based controller, the model network is 

replaced by the SNN. The performance of the controller is evaluated in real-time with the test system 

simulated in Real Time Digital Simulator (RTDS) and the controller being implemented inside a DSP. 

 

Modeling of the Test System: 

A. Modeling of the overall system 

The overall test system including the wind farm and the plug-in vehicle parking lots is presented in 

Fig. 1. The 12-bus system was proposed in [16] to evaluate the effects of FACTS devices in the 

transmission level. The system has four generators and three interconnected areas. Generator G1 represents 

the infinite bus. In a typical city, there will be several PEV parking lots distributed throughout the city in 

distances of one to few kilometers. In order to represent this, six three-phase PEV parking lots (PL1 to 

PL6) are added to this system in Area 2 to bus 13. Bus 13 is an additional bus added to the original 12-bus 

system in order to connect the PEV parking lots. Bus 13 is connected to bus 6 through 22 kV/230 kV step-

up transformers.  

B. Modeling of the wind farm 

The wind farm is equipped with a Doubly Fed Induction Generator. It uses back-to-back PWM 

converters for variable speed wind power generation. The control objective of the grid side converter is to 

keep the dc link voltage constant regardless of the magnitude and direction of the rotor power. A stator 

oriented vector control approach is used where the direct axis current is used to control the dc link voltage 

and the quadrature axis current is used to control the reactive power and in turn the voltage at the point of 

common coupling. The control strategy is similar to [17]. The objective of the rotor side converter is to 

control the active and reactive power from the stator. This is achieved by putting the d-axis of the rotor 



reference frame along the stator flux vector. The q-axis current reference is generated directly from the 

commanded electrical power and the d-axis current reference is generated from the stator reactive power 

command. The electrical power command is generated from the optimum operating point tracking strategy 

discussed in [17], when the wind speed is below a certain value. The pitch control does not work at that 

time and the wind turbine captures maximum possible energy at that wind speed. But, if the wind speed 

goes beyond a certain value, the pitch control limits the power generated by the wind turbine. The figures 

for the rotor side and grid side converter control, the relevant mathematical equations are mostly similar to 

[17] and hence not included in this report. The data for the 400 MW wind farm is taken from [18]. 
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Fig. 1. Overall Test System 

C. Modeling of the plug-in vehicle parking lot 

The parking lot model in this paper is represented by a battery followed by a bidirectional three phase 

inverter. The inverter generates a 2.08 kV three phase line-to-line rms voltage which is then passed 

through a 2.08kV/22kV step up transformer and connected to the smart park bus (bus-13 in Fig. 1). 

Between the inverter and the transformer there is a small (0.5mH) inductance. The control of the inverters 

is designed in such a way that each inverter can draw ±20 MW of active power. Considering each vehicle 

can draw ±25 kW, each parking lot in this paper represents 800 vehicles aggregated together. Here „+‟ 

sign means the vehicles are selling power to the grid, i.e. they are in discharging mode and the „-„ sign 

indicates that they are buying power from the grid, that means the vehicles are in charging mode. The 

control strategy for the PEV is presented in Fig. 2. In d-q reference frame, the active and reactive powers 

coming out of the inverter are: 
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Fig. 2. The current control strategy for the plug-in vehicle parking lots 

 

In synchronous reference frame the peak line-to-neutral voltage is in the q-axis and 0e

dsv . 

Therefore, the basis of the control is to command the currents in response to demanded power as 
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The first component of (3-4) is based on the power equations (1-2) where 
sV  is a filtered version of 

the line-to-neutral rms voltage.  This portion creates quick response to sudden changes in commanded 

power.  The integral term trims out the steady-state error.  As shown in Fig. 2, a limit is placed on the 

commanded current and this is used to prevent integrator windup.  The commanded q- and d-axis currents 

are then transformed to a-b-c variables where delta current-regulation is used to control the converter 

transistor switches. 

The entire system is modeled on a real-time digital simulator (RTDS) platform. The simulation of the 

DFIG, the rotor side and grid side inverters and the vehicle inverters – all are carried out on the giga 

processor RTDS cards using small time step (1.5 µs) simulation. 

 

Spiking Neural Network: 

In most of the engineering applications, the Integrate-and-Fire (IF) model of biological neuron has 

been used as the computational unit. In IF model, the real-valued input can be encoded by the interval 

between the successive spikes which is also known as Inter Spike Interval (ISI). In [19], it has been shown 

that in a temporally encoded IF model, the computational information is present in both mean and 



variance of the synaptic input. This type of computational unit has advantage over the perceptron like 

classical units because, if there are equal amount of excitatory and inhibitory inputs to the neuron, the 

mean effect on the model is zero. But, with the spike-rate model mentioned above, if the mean vanishes, 

still the information remains in the variance and there is no problem with the firing of the unit. In this 

work, the spiking neuron model introduced in [13], is used in a feedforward network and is explained 

here. The inputs from the previous layer are collected and aggregated by (5) and (6) to generate the mean 

and standard deviation of the membrane potential over the time-slice represented by a given epoch. 
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The j
th
 input into the system is λj, α is a tuning constant greater than zero, and r is the ratio of 

excitatory to inhibitory inputs. The superscripted λ values are centers, used to offset a given neuron in 

much the way a radial basis function (RBF) works. The weights connecting neuron j to input i are given 

by the subscripted w values. This unique structure allows for an equal number of excitatory and inhibitory 

inputs (caused when r = 1) to not completely damp out the neuron‟s ability to generate meaningful output 

[13]. The actual output of the neuron is the “firing rate,” which serves as the real value the neuron is to be 

calculating, with no further decoding necessary. To determine this firing rate, two more pieces of 

information are required: the ISI, or inter-spike interval, and the “refractory period” Tref. After a biological 

neuron fires off a spike due to having its membrane‟s threshold potential exceeded, the membrane is 

actually at a lower potential than its resting potential. The refractory period is the amount of time it takes 

for this potential to rise back to the resting state. The ISI is the given by (7), with g(x) being Dawson‟s 

Integral (given in (8)). The relaxation rate of the neuron – how long it takes for a spike‟s influence on the 

membrane potential to fade – is given as τ. Vrest and Vthresh are the resting and threshold potentials of the 

membrane, respectively. Finally, (9) shows the calculation of the firing rate output of the neuron, using 

the carefully-determined ISI. 
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Adaptive Critics Based Wide-Area Controller: 

The single-line diagram of the test system is already shown in Fig. 1. Both the PSSs, the wind farm 

and the PEV parking lot controllers at the local level are designed using standard linear control techniques 

but are coordinated using the WAMC to improve the as a whole system performance. The WAMC 

receives remote signals from different devices including the speed deviations of G2 and G3 (∆ω2 and ∆ω3 

respectively) and the voltage deviation at bus 6 (∆V6). These remote signals contain important 

transient/dynamic information regarding the stability of the system. Based on those signals, the ACD 

based WAMC produces the control signals for the generators (∆VT2 and ∆VT3), the grid side reactive 



power command for the wind farm (∆Qg), and the reactive power command for the PEVs (∆QPEV-1 to 

∆QPEV-6). 

The functioning of ACD based neurocontroller is presented in Fig. 3. It has three neural networks: a) 

the action network or neurocontroller, b) the model network or the neuroidentifier and c) the critic 

network. The neuroidentifier is based on SNN. The neurocontroller generates the control signals from the 

delayed values of remote signals. The weights of the neurocontroller are adjusted by backpropagating 1 

though the trained critic network to generate YJ / and then passing the derivative through the trained 

neuroidentifier to obtain /J A. The neuroidentifier basically identifies the model of the system from the 

delayed values of the remote signals and the action generated by the neurocontroller. The identifier 

predicts the output of the plant one time step ahead so that it can be used by the critic network. The 

function of the critic network is to approximate the cost-to-go function J of Bellman‟s equation of 

dynamic programming given by equation (6), where γ is a discount factor between 0 and 1 and U(t) is 

utility function. In the training of the critic network, the objective is presented by (7), where E(t) is given 

by (8). 
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Here ˆ( )J t is the estimated cost-to-go by the critic network at time t. 
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Fig. 3. The Adaptive Critic Design based wide-area controller 

 

Results: 

In the first stage, the neuroidentifier is designed using SNN. The time delayed values of the variables 

Y (Y(t-1), Y(t-2) and Y(t-3)) and the current and time delayed values of the variables A (A(t), A(t-1) and 

A(t-2)) are used to predict the current value of Y (Y(t)). In order to excite almost all modes of oscillation, 

Pseudo Random Binary Signal (PRBS) is applied at the action points. For the sake of simplicity, the 

reactive power commands of the parking lots are lumped together. This means, six variables ∆QPEV-1 to 

∆QPEV-6 are represented by one variable (∆QPEV). Therefore, PRBS is applied at ∆VT2, ∆VT3, ∆Qg and 

∆QPEV. Since, three time delayed values of each input is used, the total number of input for the SNN is 21. 

Number of neurons is considered to be 50. The system is run for 30 seconds and 1000 data points are 



collected. The parameters of the SNN are considered to be the same as [14]. All the input signals are 

scaled uniformly within the range of -1 to +1. Fig. 4 shows the identification characteristics by the SNN 

of the variables ∆ω2, ∆ω3 and ∆V6. It is observed that within only 1000 data points, the neuroidentifier 

can successfully identify the Y variables. The characteristics of one of the PRBS input signal (∆VT2) is 

also shown in that figure as an example. Fig. 5 is the zoomed version of Fig. 4. It shows more closely how 

good the SNN works as an identifier.  

In the second stage, adaptive critic based WAC is designed. In order to do that, first the critic is pre-

trained keeping the controller parameters constant. Now, the critic parameters are kept constant and the 

controller is trained. This process is repeated several times upto the point when there is no change in the 

weights of the controller and the critic network. Once both of them are trained, all the three neural 

networks are connected to the system with their weights constant. 

In order to evaluate the performance of the WAC, the active power commands of the parking lots are 

suddenly changed in such a way that all of them together discharge a total power of 90 MW to the grid. 

As a result of this, without any coordinating WAC, the voltage at bus-6 rises to almost 1.03 p.u. from 1.0 

p.u. and stays there. But, with WAC, reactive power is injected into the grid from both wind farm and also 

from PEV parking lots and keep the voltage constant at 1.0 p.u. This is demonstrated in Fig. 6.  

In order to show, how the WAC improves the stability of the system, a three phase line to ground 

fault of 100 ms duration is applied at bus-6. It is observed in Figs. 7-8 that, without WAC, the speeds of 

the generators start oscillating with the application of the fault. But, with WAC, the speed oscillation of 

the generators gradually damp out and the system restores to a stable operating condition.    
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Fig. 4. Identification by SNN 
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Fig. 6. Voltage characteristics of bus-6 
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Fig. 7. Speed oscillation of Generator 2 
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Fig. 8. Speed oscillation of Generator 2 

 

Conclusion: 

In this research, a wide-area controller based on adaptive critic design is developed for a smart power 

grid which includes a large wind farm and six plug-n vehicle parking lots. The adaptive critic based 

neurocontroller uses the potential of spiking neural network for neuroidentification purposes. The results 

show that the performance of SNN is very fast and effective in identifying system dynamics from the time 

delayed values of the inputs and outputs. It is also observed that the wide-area coordinating controller can 

keep the bus voltage at desired level by varying the reactive power command of the wind farm and the 

plug-n vehicles. Not only that, it also helps in stabilizing the system in case of a transient disturbance.  

In future, the SNN will be used in both the neurocontroller and in the critic network of the adaptive 

critic framework and its performance will be investigated. 
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