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Abstract— The Capacitated Arc Routing Problem (CARP) is
a challenging combinatorial optimization problem with many
real world applications, e.g., salting route optimization and fleet
management. Despite the fact that most of previous research
formulate CARP as a single-objective problem, one often has
to consider more than one objective simultaneously in practice.
In this paper, we investigate the more realistic multi-objective
CARP (MO-CARP). By combining the advanced features from
both the MAENS approach for single-objective CARP and
the strategies in evolutionary multi-objective optimization, a
new memetic algorithm called Decomposition-based Memetic
Algorithm with Extended Neighborhood Search (D-MAENS)
is proposed. The experimental studies have shown that such
combination outperforms significantly a well known existing
multi-objective evolutionary algorithm (NSGA-II) and the state-
of-the-art approach for MO-CARP (LMOGA), in terms of both
the convergence to the Pareto front and the distribution of the
nondominated solutions. In addition, the efficacy of employing
local search in solving MO-CARP has been demonstrated.

I. INTRODUCTION

The Capacitated Arc Routing Problem (CARP) is a well
known combinatorial optimization problem which has wide
applications in the real world, including winter gritting [1]
[2], urban waste collection, post delivery, etc [3]. For this
reason, it has attracted much interest in the last few decades.
The problem can be briefly described as follows: given a
graph and some of its edges and arcs (directed edges) that
are required to be served (we call each of them a task),
a number of vehicles with limited capacity are located in a
special vertex called the depot to serve the tasks. The problem
is to seek an optimal routing plan for the vehicles so that the
following constraints are satisfied:

« Each vehicle starts and ends at the depot;

o Each task is served by exactly one vehicle;

o The total demand of the tasks served by each vehicle
does not exceed its capacity.

For a better understanding, we take the salting route
optimization problem (SRO) as an example. SRO is a routing
problem that seeks an optimal plan for spreading salt on the
streets in winter nights to prevent them from freezing, and
further avoid the possibly caused accidents. In the case of
SRO, the vertices correspond to the crossroads while the
edges and arcs correspond to the two-way and one-way
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streets, respectively. For each street required to be served,
the demand is the amount of salt needed to spread on it. The
depot indicates the location of the salt warehouse, where the
vehicles load the salt to spread.

CARP is NP-hard [4], and exact methods are only ap-
plicable to the small and medium-size instances. However,
most of real world applications have large problem sizes.
Besides, the plans often have to be made within a restricted
time budget. Under such a situation, heuristics and meta-
heuristics are promising approaches in order to provide
acceptable solutions in time. For example, the Augment-
Merge heuristic proposed by Golden and Wong [4], the path
scanning heuristic proposed by Golden et al. [5] and the
Ulusoy’s splitting heuristic [6] are three typical heuristics
for CARP. The first meta-heuristic approach is the tabu
search proposed by Hertz et al. [7], and the two state-of-
the-art meta-heuristics at present are the memetic algorithm
(MA) proposed by Lacomme et al. [8] and the tabu search
proposed by Brandao et al. [9]. We have also conducted
intensive investigations on CARP in our previous work.
According to the observation of the characteristic of CARP,
we proposed a Global Repair Operator (GRO) that can be
embedded in any search-based approach for CARP [10].
More importantly, we proposed a Memetic Algorithm with
Extended Neighborhood Search (MAENS) for CARP [12].
MAENS was demonstrated to be better than other existing
approaches in the qualities of final solutions, though more
computational time was required.

In most of previous research, CARP was formulated as
a single-objective problem. However, in many real-world
applications, more than one objective should be taken into
account. For example, in SRO, the financial cost of the
plan depends on both the total cost and the cost of the
longest route (which is also called the makespan). The former
determines the expense of fuel, while the latter determines
the payment of the drivers that is related to their working
time. Therefore, the multi-objective CARP (MO-CARP) is
closer to reality than traditional CARP and deserves much
more research interest. In our study, we investigate MO-
CARP and aim at minimizing the total cost and makespan
simultaneously. To distinguish from MO-CARP, we refer
to the traditional CARP only considering the total cost as
the single-objective CARP (SO-CARP) hereafter. In a multi-
objective optimization problem (MOP), instead of finding a
single global optimum, the goal is often maintaining a set
of solutions that are good trade-offs” or good compromises
among the objectives [13]. Evolutionary Algorithms (EAs)
are commonly used in solving MOPs, since they can deal



with a set of solutions (also called population) simultane-
ously and thus can find multiple such good trade-off solutions
in a single run. Therefore, in our study, we consider solving
MO-CARP with EAs.

MO-CARP is a challenging problem because of the dif-
ficulties induced by the characteristics of both CARP and
MOP. In contrast to SO-CARP, investigation of MO-CARP
is still in its infancy, and there has been only one published
approach proposed for it [14]. In the paper, the authors
proposed a hybrid algorithm by combining the SO-CARP
approach proposed by them earlier [8] and the nondominated
sorting genetic algorithm II (NSGA-II) [15], which is one of
the most commonly used EA framework for MOP.

In this paper, by investigating MO-CARP from the view-
point of both CARP and MOP, we propose an algorithm
named the Decomposition-based Memetic Algorithm with
Extended Neighborhood Search (D-MAENS). It is the hybrid
algorithm that combines the MAENS approach [12] with a
decomposition-based framework. Besides, proper strategies
are employed to address the EMO issues in the context of
MO-CARP, considering both the performance of the algo-
rithm and the ease of implementation. D-MAENS was com-
pared with the genetic algorithm proposed by Lacomme et al.
(LMOGA) [14] and NSGA-II [15] on the gdb test set in terms
of several performance metrics. The empirical results show
that D-MAENS performed better than the other compared
algorithms with respect to both convergence to the Pareto
front and the distribution of the nondominated solutions.
Furthermore, observing that D-MAENS and LMOGA, both
of which employ local search, performed much better than
NSGA-II that does not employ local search, the efficiency
of employing local search in solving MO-CARP is verified.

The rest of the paper is organized as follows: Section II
gives the background of our work, including the detailed in-
troduction of MO-CARP and related work on EMO. Section
III discusses the important issues in solving MO-CARP with
EAs and evaluate the existing strategies for addressing them.
Section IV describes the proposed D-MAENS. Afterwards,
experimental studies are carried out in Section V. Finally,
the paper is concluded in Section VI.

II. BACKGROUND
A. Multi-Objective Capacitated Arc Routing Problem

CARP is defined on a graph G(V, E, A), where V, E
and A stand for the set of vertices, edges and arcs (di-
rected edges), respectively. Each edge (v;,v;) € E and arc
(vi,v;) € A is associated with three nonnegative features :
the traversal cost ¢/ (v;, v;), the serving cost ¢*¢"(v;, v;)
and the demand d(v;,v;). There are some certain edges and
arcs that are required to be served, and their demands are
greater than zero. Such edges and arcs are called tasks. The
edge task set is denoted as Er = {(v;,v;) € E|d(vs,v;) >
0} and the arc task set is denoted as Ar = {(v;,v;) €
Ald(v;,v;) > 0}. Finally, the task set is denoted as T' =
ERr U Ag. The tasks are to be served by a set of m vehicles
with an identical capacity () that are based at the depot

vs € V. An edge task (v;,v;) can be serve from both the
positive direction (from v; to v;) and the negative direction
(from v; to v;), while an arc task (v;,v;) can only be
served from v; to v;. In order to facilitate the problem
definition, each edge task is assigned two identities, one for
each direction, and each arc task is assigned one identity.
All the assigned identities are unique positive integers. An
identity ¢ € N is associated with the following six features:
the tail vertex tv(t), the head vertex hv(t), the traversal cost
'V (t), the serving cost ¢*"*(t), the demand d(t), and the
inverse identity inv(t). For an edge task (v;,v;) and the two
identities ¢; assigned to its positive direction (v;,v;) and
to assigned to its negative position (v;,v;), the features are
defined as follows:

)
. cse’rv(tl) — cserv(tz) — CSCT.U(Ui7’Uj>;
. d(tl) = d(tg = d(vi, Uj);
. inv(tl) = tg, im}(tg) = tl.

For an arc task (v;,v;) and its corresponding identity ¢,
the features are defined as:

o hou(t) =v;, tu(t) = vy;
. Ctrav (t) — Ctrcw (vivvj);
R cserv(t) — Cserv(vi, ’Uj);
. d(t) = d(?]i, ’Uj);

e inu(t) = —1.

Since all of the identities are positive, inv(t) = —1
indicates the inverse identity of ¢ does not exist. In addition,
a depot loop is assigned the identity 0 and its features are
defined as follows:

e tv(0) = hv(0) = vg;
. Ctrav(o) — Cserv(o) — d(O) — 0;
o inv(0) = 0.

Using the above notations, a CARP solution can be
represented as a set of routes S = (R, Ra, ..., Rn). Each
route Ry, is a sequence of the identities Ry, = (15, ..., tf ).
In order to ensure that each route starts and ends at the
depot, Rj starts and ends at the depot loop 0, i.e., t’f =
tfk = 0. An example is illustrated in Fig. 1. In the graph,
ER = {(U17U5), (U27U6)7 (1)3,7]7), (1)47’03)}, AR = @ and
the depot is vg. The numbers presented close to each edges
are the identities assigned to them. The number out of the
parenthesis is the one assigned to the current direction while
the number in the parenthesis indicates the one assigned to
the inverse direction. The dashed arrows between adjacent
task identities (e.g., (vo,v1) and (v7,vg) in Fig. 1) stand for
the shortest path from the former vertex to the latter vertex,
which can be obtained by Dijkstra’s algorithm [16].
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R1=(0, 1, 8, 0)

R2=(0, 3, 6, 0)

Fig. 1. An example of a CARP solution

Under such solution representation scheme, the problem
can be represented as follows:

min ¢"*(S) = Z ' (Ry) (1)
k=1

min ¢"*(S) = max " (Ry) 2)

st.r Y (I —2) =T 3)
k=1
th # 152,(k1,p1) # (R, p2) )
th # ino(th2), Y (ki p1) # (ka,p2)  (5)
d(Ry) < QY1 <k<m 6)

The inequality (k1,p1) # (k2,p2) between the two pairs
(k1,p1) and (kg,p2) indicates that at least one of the two
inequations k1 # ks and p; # ps is satisfied. ¢**(R},) and
d(Ry;) stand for the total cost induced and the total demand
served in route Ry, = (t§,5, ...t} ). They can be calculated
as follows:
-1
AN Ry) =Y [TV (tR) + dist(tv(th), hu(th )]

p=1

173
AR = S ()

where dist(vy,vs) indicates the distance from vertex v to
vertex ve, which is defined as the length of the shortest path
from v to va.

Eq. (1) is the total cost while Eq. (2) is the makespan.
Constraints (3)-(5) guarantee that each task is served exactly
once by one vehicle. Constraint (6), which is also called the
capacity constraint, indicates that the total demand served
by each vehicle does not exceed its capacity. Note that
each route naturally starts and ends at the depot since the
corresponding task identity sequence starts and ends at the
depot loop.

B. Related Work on Evolutionary Multi-objective Optimiza-
tion
A MORP can be briefly described as follows:

max F(z) = (fi(z),..., fa(z))
st.: x el

where (2 is the decision variable space, and F': Q2 — R"™ is
an objective vector that consists of n contradicted objectives.
Given two objective vectors v and v, u is said to dominate
v if an only if all the objective values of u are no smaller
than that of v and at least one objective value of u is greater
than v. v and v are said to be nondominated when neither
w nor v dominate the other. Then, a solution z* is said to
be Pareto optimal if there is no other x € € so that F'(x)
dominates F'(z*). When solving a MOP, the goal is to find or
approximate the set of Pareto optimal solutions (called Pareto
optimal set or Pareto set for short) and their corresponding
objective vectors (called Pareto front).

When solving MOPs with EAs, there are several important
issues that have not been encountered when solving single-
objective problems. First, unlike in single-objective optimiza-
tion problems, the fitness of a solution should be assigned
according to multiple criteria (the multiple objective values)
in MOP. Second, when solving single-objective problems, the
goal is to obtain a single global optimum. However, in MOP,
a set of nondominated solutions should be maintained. There-
fore, the distribution of the nondominated solutions has to be
considered. In general, the nondominated solutions should be
distributed as uniformly as possible. Besides, they should be
able to cover the whole Pareto front completely. Third, like
in single-objective cases, elitism should be implemented to
keep the nondominated solutions in the population during the
search. There have been various MOEAs proposed to address
the above three issues in different ways (e.g., [17] [18] [19]
[15] [20] [21D).

As a more general research field, the evolutionary multi-
objective combinatorial optimization has attracted much
more interest than MO-CARP. A survey of multi-objective
combinatorial optimization problem was given in [22]. Ex-
amples of the search-based methods for solving multi-
objective combinatorial optimization problems were provided
in [23], including traditional MOEAs, simulated annealing,
tabu search, etc. In addition to directly using the traditional
MOEAs, some researchers considered combining the MOEA
framework with local search to enhance the performance of
the algorithm (e.g., [24] [25] [26]). However, it is difficult to
apply the same algorithm to different combinatorial problems
because of their different problem structures. For example,
when applied to the Traveling Salesman Problem [25] and 0/1
knapsack problem [26], although the same framework was
adopted, the representations and operators were different.
Similarly, the traditional MOEAs cannot be expected to show
the same performance on MO-CARP as they do on the
test functions like the ZDT [27] and DTLZ [28] test sets.
One has to design a specific algorithm according to problem
characteristics of MO-CARP.

When solving MO-CARP, one can either extend an ap-
proach of its single-objective counterpart SO-CARP or adapt
an existing MOEA to the case of MO-CARP by employing
the problem specific solution representation and operators.
The only published approach for MO-CARP was extended
from an SO-CARP approach [14]. The above two strategies



have complementary advantages and disadvantages. When
extending an SO-CARP approach, the algorithm can search
effectively in the complicated solution space, but the EMO
issues are not appropriately addressed. On the other hand,
when using an existing MOEA framework, the EMO issues
are considered carefully while the search may be ineffective
in the solution space. Therefore, it is reasonable to combine
the two strategies together to overcome the weaknesses of
both of them. Concretely, we consider combining an existing
SO-CARP approach and proper strategies to address the
EMO issues. To this end, the existing strategies have to be
evaluated in the context of MO-CARP. This will be done in
the next section.

III. EMO ISSUES IN MO-CARP

It has been demonstrated that hybridizing EAs with local
search shows good performance in solving SO-CARP (e.g.,
[8] and [12]). When combining an MOEA with local search,
a new important issue arises. That is, how to identify
a neighboring solution to replace the current solution. In
general, the best solution in the neighborhood is selected
to replace the current solution, and thus the issue can be
transformed to identifying the best solution in the neighbor-
hood. Together with the aforementioned three issues, there
are four important issues in solving MO-CARP with EAs:
(1) fitness assignment, (2) diversity preservation, (3) elitism
and (4) identifying the best neighboring solution during local
search.

Fitness Assignment: The existing strategies for fitness
assignment in EMO can be divided into three types: the
criterion-based (e.g., [17]), domination-based (e.g., [15])
and decomposition-based (e.g., [21]) methods. The first two
strategies are solely based on the objective values, and
thus is expected to perform similarly when employed in
various problems. In other words, when using the criterion-
based methods, the intermediate regions of the Pareto front
will be overlooked, while the domination-based methods
can effectively force the population towards the Pareto
front. When using the decomposition-based methods, it is
assumed that each Pareto optimal solution can be seen as
the optimal solution of a corresponding scalar optimization
sub-problem. However, there usually exist solutions which
are not optimal for any weighted sum of the objectives in
combinatorial MOPs such as MO-CARP [29]. Therefore, the
decomposition-based method is expected not to perform well
for fitness assignment in MO-CARP.

Diversity Preservation: The niching technique, cell-based
methods and crowding distance method are the three typical
existing strategies for diversity preservation. The basic idea
behind them are preventing the occurrence of multiple solu-
tions that are close to each other in the population. Therefore,
they are expected to be able to maintain diversity in MO-
CARP as well. Among them, the performances of niching
technique and cell-based methods are parameter dependent,
i.e., their performance depend largely on the parameters such
as the sharing parameter dspqre in the niching technique and
the cell size in the cell-based methods. On the other hand, the

performance of the crowding distance method is expected to
perform consistently since it has no user-defined parameter.
There is an additional implicit strategy to maintain diversity
associated with the decomposition-based method. That is,
the diversity can be naturally preserved by the “diversity”
among sub-problems [21]. However, this is based on the
assumption that different sub-problems can reach different
optimal solutions, which is not true in MO-CARP.

Elitism: The elitism mechanism can be implemented by
either storing the nondominated solutions in an archive or
combining the parents and offsprings for selection. Both of
them perform independently of the problem structure.

Evaluating Solutions During Local Search: The most
commonly used strategy is to aggregate the objectives into a
single objective during the local search (e.g., [25] [30]) by the
weighted sum approach. Indeed, their performances depend
largely on the selected weight vector. Besides, one can also
employ a decomposition-base framework so that the local
search is only applied in each single-objective sub-problem.
In this way, there is no user-defined parameter.

According to the above discussions, it can be seen
that the existing MOEAs employing criterion-based and
decomposition-based methods for fitness assignment may
perform unsatisfactorily in the case of MO-CARP. Besides,
when using the niching technique and cell-based method
for diversity preservation, and using aggregation method
for evaluating solution during local search, the correspond-
ing parameters are often difficult to tune to guarantee a
good performance. Therefore, we propose the algorithm D-
MAENS by employing the following EMO strategies: (1) the
fast nondominated sorting procedure of NSGA-II for fitness
assignment; (2) the crowding distance approach for diversity
preservation; (3) both of the two existing elitism strategies for
elitism and (4) the decomposition-based strategy of MOEA/D
for identifying best solutions during local search.

IV. DECOMPOSITION-BASED MEMETIC ALGORITHM
WITH EXTENDED NEIGHBORHOOD SEARCH

D-MAENS employs a decomposition-based framework
and the evolutionary operators of MAENS. The EMO strate-
gies mentioned above are also included to address the EMO
issues. The framework can be described as follows:

Input:

o A MO-CARP instance P;

o A stopping criterion;

o The number of decomposed sub-problems: N;

o N uniformly distributed weight vectors: Xl, s N ;

o Neighborhood size of each sub-problem: 7T'.

Output: A set of nondominated solutions X *.

Step 1: Initialization:
a) Set X* = 0;
b) Generate N  single-objective  sub-problems
{P, PQJ ey PL\’}’ qwhere the objective of P; is
gv(@|X) = X f(2);
c¢) For each )\*, obtain the T closest weight vectors
Xt XNt according to the Euclidean distance.



Then, set the neighborhood B(i) = {iy, ..

d) Randomly initialize a

{z1,....,xN}s
Step 2: Update:

For7i=1to N, do

Step 2.1: Assign each sub-problem P; a unique
representative z; € X;

Step 2.2: Construct a sub-population X; =
{}|k € B(i)}:

Step 2.3: Randomly select two solutions zj, and x]
from X;;

Step 2.4: Apply the crossover and local search of
MAENS to zj and x] and the objective
function ¢“*(x|)\?) to generate an off-
spring y;;

Step 2.5: Update X* by ;.

Combine the parent and offspring populations to-

gether and sort them by the fast nondominated

sorting procedure and crowding distance approach
of NSGA-II [15]. Then, pick the first /N solutions
into the next generation.

Step 3: Stopping Criteria: If stopping criteria is satisfied,
stop the algorithm and return X *. Otherwise, go to

Step 2.

In MO-CARP which has two objectives, the weight vectors
are uniformly set as follows:

1—1 N —1
N-1"N - 1)

Accordingly, at Step 2.1, the representatives of the de-
composed sub-problems are assigned in Algorithm 1. In this
way, it is expected that each sub-problem can be assigned
a relatively good solutions according to its own aggregated
objective.

a7}
population X =

X= (

Input: A population X = {z1,...,2n};

Output: A representative set {z7, ..., 2\ };
I: fori=1to N —1do

22 forj=i+1to N do

3: if f2($]’) < fg(.]?i) or

(fa(zj) = fo(z;) and fi(z;) > fi(x;)) then

4 swap x; and x;
5 end if
6: end for
7: end for

8: for i =1to N do

9: set z] = x;;

10: end for

Algorithm 1: The assignment of representatives

In D-MAENS, the solution representation scheme,
crossover operator and local search process of MAENS
[12] are directly employed, while the solution evaluation is
adapted to the multi-objective case. For this reason, we only
describe the solution evaluation of D-MAENS here. For full
details of MAENS, readers can refer to [12].

As mentioned in Sub-Section II-A, in MO-CARP, the total
cost ¢*(S) and the makespan ¢™*(S) are to be mini-
mized. Besides, to compare between feasible and infeasible
solutions, the total violated load tvl(S) is also taken into
account. Since c'°'(S) and ¢™%*(S) are not of the same
scale, normalization should be carried out between them. To
this end, the two fitness functions are defined as follows:

F1(8) = &1(8) = ("H(8) — ) /(% — )

* ok *
where ¢°t and ¢! indicate the minimal and maximal values

among the total cost of all possible solutions, while ¢*** and
cn® stand for the minimal and maximal possible makespan
values. However, in practice, we cannot obtain the exact
values of them due to the large problem size. Therefore, we
replace them with the approximated values. Concretely, they
are set to the minimal (maximal) value among the total cost
(makespan) of the feasible solutions found during the search
process. Finally, the objective function of each sub-problem
can be stated as follow:

9" (SIX) = AL f1(S) + Ao fo(S)

During the local search, the feasible and infeasible solu-
tions are compared according to the following simple but
effective rule: A solution .57 is said to be better than another
solution _’SQ if tvl(Sl)_,< tvl(S3) or tvl(Sy) = twl(Ss) and
g (51|A) < g**(S2|A).

V. EXPERIMENTAL STUDIES

In order to evalute D-MAENS, we compared it with
LMOGA and NSGA-II on the gdb test set [31]. Here,
LMOGA is selected to be compared since it is the only
published algorithm proposed for MO-CARP and represents
the way of extending an approach of SO-CARP to solve MO-
CARP. NSGA-II stands for the traditional MOEAs without
local search and represents the way of directly using an
existing MOEA for MO-CARP.

A. Experimental Setup

The experiments were carried out on the gdb test set
[31], which was generated by DeArmon in [31] and consists
of 23 instances. In our experiments, the MO9 version of
LMOGA proposed in the original paper [14] was selected, for
it showed the best performance over the test instances among
all the 9 LMOGA versions. For the sake of convenience,
the MO9 version of LMOGA is called LMOGA hereafter
without loss of clarity. Note that NSGA-II was proposed for
numerical optimization problems. In order to directly use it
to solve MO-CARP, problem specific solution representation
and operators should be employed. In our experiments, the
solution representation and crossover operator of D-MAENS
were directly employed in NSGA-II, while the mutation
operator was a random implementation of the single insertion
operator. That is, a task is randomly selected and moved to
another randomly selected position. The parameter settings
of the compared algorithms are listed in Table I. In this way,



TABLE 1
PARAMETER SETTINGS OF THE COMPARED ALGORITHMS

Parameter D-MAENS LMOGA NSGA-IT
Population size 60 60 60
Crossover rate 1.0 1.0 1.0

Mutation/LS rate 0.1 Every 10 generations 0.1
Max. generations 200 200 200n/ logn
Neighborhood size 9 - -

the compared algorithms have their parameters as consistent
with each other as possible. Note that NSGA-II spends much
less time at each generation since it does not employ the
local search process, which is much more time consuming
than the traditional mutation operation. Hence, we set the
maximal number of generations of NSGA-II to 200n/ log n,
where n is the number of tasks. In this way, the overall
computational time of NSGA-II will be comparable with that
of D-MAENS. All the algorithms were independently run 30
times on a computer with Intel(R) Xeon(R) E5335 2.00GHz
CPU.

B. Performance Measures

The performance of an MOEA includes two aspects. First,
the obtained nondominated set should be as close to the
true Pareto front as possible. Second, the solutions in the
obtained nondominated set should be distributed as diversely
and uniformly as possible. It is clear that the two aspects
cannot be fully reflected by a single metric, and a number of
metrics have been suggested in the previous research works
[32]. In this study, the following three metrics are used.

Distance from reference set (/p): This metric was
suggested by Czyzzak et al. [33]. It is defined as follow:

> yer{minzea{d(z, y)}}
|R|

Given a set A, Ip(A) provides information about the average
distance from a solution in the reference set R to the closest
solution in A. A smaller value of Ip(A) indicates that A
is closer to R, and Ip(A) = 0 means that A covers R.
In general, the reference set R is defined as a set of Pareto
optimal solutions so that their objective vectors are uniformly
distributed in the Pareto front. In this way, Ip indicates the
closeness of the nondominated set to the Pareto front and the
uniformity of the distribution of the nondominated solutions.
Concretely, a smaller Ip indicates that the nondominated set
is closer to the Pareto front and the nondominated solutions
are distributed more uniformly. However, in practice, the
Pareto optimal solutions are difficult to be obtained in a MO-
CARP instance. Furthermore, the Pareto optimal solutions
themselves may even be distributed non-uniformly. In our
experiments, as an approximation of the Pareto set, R is
defined as the set of solutions that remain nondominated
when the nondominated solutions obtained by all the 30
runs of the compared algorithms are combined together.
Note that Ip can no longer reflect the uniformity that
the nondominated solutions are distributed due to the non-
uniformity of the distribution of solution in R.

Ip(A) =

Spread (A): This metric was suggested by Deb et al. [15].
It can be stated as follow:
dp +dy + 30 d; —d
A(A) = Jias l+2¢:1| _‘
derler(nfl) x d

where d; and d; are the Euclidean distances between the
leftmost and rightmost solutions of the Pareto front and the
extreme solutions in A. n is the number of solutions in A
and d; is the Euclidean distance between the i*" left and the
(i + 1) left solutions in A. d stands for the mean value
of all d;’s. A implies the uniformity of distribution of the
nondominated solutions and the extent of the nondominated
set. A smaller A indicates that the nondominated solutions
are distributed more uniformly and the nondominated set has
a better extent. In practice, the leftmost and rightmost solu-
tions of the Pareto front are not available. Therefore, in our
experiments, they are defined as the leftmost and rightmost
solutions among the nondominated solutions obtained by all
the 30 runs of the compared algorithms.

Hypervolume (/;): This metric was suggested by Zitzler
et al. [20] to indicate the volume covered by the nondomi-
nated solutions. Given a nondominated set A and a reference
point in the objective space f*, Ig(A) is defined as the
area of the union of all the hypercubes constructed by the
objective vectors of the solutions in A and f*. Iy reflects
the closeness of the nondominated set to the Pareto front.
In addition, it implies the extent that the nondominated
solutions cover the Pareto front. A greater Iy indicates that
the nondominated set is closer to the Pareto front and covers
the Pareto front more completely.

In our study, all of the metrics are computed based on the
normalized objective vectors of the nondominated solutions,
which are obtained as follows:

fi= (fi = £ /(£ = fM0)i = 1,2

where f; and fy stand for the total cost and makespan,
respectively. f™2% and f™® are the maximal and minimal
value of f; among all the results obtained over the 30 runs
of the three compared algorithms.

C. Experimental Results

Table II presents the average value of Ip, A and Iy
over the 30 independent runs of the compared algorithms.
In addition, the characteristics of the instances such as the
number of vertices and edges are provided. In the tables,
the columns headed “|V|” and “|E|” stand for the number
of vertices and edges in the graph of the instance. Since
in the gdb instances, all of the edges are required to be
served, i.e., the number of tasks is equal to that of the edges.
Thus, the column “|E|” also presents the number of tasks.
The column headed “7” indicates the minimal number of
vehicles required subject to the capacity constraint, which
can be obtained by dividing the total demand of the tasks by
the capacity of vehicles. In general, given the same number
of tasks, a greater value of 7 indicates a higher complexity
of the instance. For each instance and each performance
metric, the Wilcoxon rank sum test was further carried out




TABLE I
THE AVERAGE VALUE OF I, A AND 7 OVER THE 30 INDEPENDENT RUNS OF THE COMPARED ALGORITHMS ON THE GDB SET. THE SIGNIFICANTLY

BEST RESULTS ARE IN BOLD (WITH SMALLEST Ip AND A, WHILE WITH GREATEST [ 7).

Name | |V| |E|] 7 Ip A Iy

D-MAENS LMOGA NSGA-II | D-MAENS LMOGA NSGA-II | D-MAENS LMOGA  NSGA-II
gdbl 12 22 5 0.000000 0.000000 0.141144 0.737152 0.737152  0.738243 0.933333 0.933333  0.801793
gdb2 12 26 6 0.047577 0.055494  0.201959 0.744072 0.775904  0.846040 0.968374 0.968089  0.733586
gdb3 12 22 5 0.008124 0.049914  0.190699 0.835997 0.879512  0.820943 0.960873 0.950715  0.821352
gdb4 11 19 4 0.001766 0.019672  0.149119 0.780746 0.737634  0.809841 0.928217 0.923841  0.782717
gdb5 13 26 6 0.013742 0.081535  0.191624 0.798773 0.869112  0.824886 0.925012 0.881022  0.665339
gdb6 12 22 5 0.022758 0.010959  0.166298 0.820776 0.844730  0.777610 0.927929 0.930271  0.744261
gdb7 12 22 5 0.001905 0.206082  0.259892 0.727180 0.787064  0.779443 0.779109 0.632002  0.532821
gdb8 27 46 10 0.065808 0.097087  0.214706 0.812013 0.859538  0.823990 0.924160 0.872941  0.724383
gdb9 27 51 10 0.038974 0.051164  0.274357 0.874343 0.857652  0.881908 0.930479 0.917804  0.633869
gdbl0 12 25 4 0.017936 0.258262  0.351409 0.709984 0.879912  0.853631 0.823408 0.630947  0.465408
gdbl1 22 45 5 0.039002 0.277287  0.315678 0.785507 0.918200  0.900487 0.881007 0.708175  0.512891
gdbl2 13 23 7 0.005164 0.016110  0.104416 0.850628 0.832020  0.853378 0.980243 0.979106  0.809011
gdbl13 10 28 6 0.170071 0.180372  0.273860 0.988458 1.000000  0.874523 0.865900 0.862069  0.707721
gdbl4 7 21 5 0.033982 0.261274  0.352942 0.769615 0.863232  0.854531 0.872280 0.794213  0.589352
gdbl5 7 21 4 0.050147 0.349475  0.227593 0.695741 0.869075  0.776009 0.735185 0.562500  0.556944
gdbl6 8 28 5 0.068613 0.303918  0.331089 0.731969 0.890029  0.844825 0.797619 0.608333  0.467989
gdbl7 8 28 5 0.180030 0.550350  0.380069 0.700056 0.931299  0.756089 0.825556 0.621111  0.550556
gdbl18 9 36 5 0.064065 0.314809  0.339070 0.705372 0.875640  0.880833 0.842605 0.737725  0.533990
gdb19 8 11 3 0.000000 0.000000  0.217262 0.689926 0.689926  0.673179 0.714286 0.714286  0.504762
gdb20 11 22 4 0.125009 0.195592  0.182633 0.768393 0.823900  0.823426 0.819643 0.776587  0.735615
gdb21 11 33 6 0.066627 0.252814  0.237787 0.777325 0.914989  0.888137 0.850412 0.713228  0.634039
gdb22 11 44 8 0.066028 0.143205  0.243994 0.823458 0911066  0.813657 0.869808 0.740383  0.606475
gdb23 11 55 10 0.104860 0.144992  0.386921 0.875470 0.881174  0.869281 0.803514 0.719563  0.389269

on the results obtained by the 30 runs of the three compared
algorithms, and the one that is significantly better than that
of the other two (under the significance level of 95%) is
marked in bold. Note that Ip and A are to be minimized
while I is to be maximized, the boldfaced I and A are the
smallest while Iy is the greatest among that of the compared
algorithms.

First, we focus on the metric Ip. It is shown from the
tables that D-MAENS performed significantly the best 20
out of the total 23 instances. LMOGA showed significantly
the best performance for 3 instances. NSGA-II was unable
to significantly outperform the other two algorithms for any
of the instances. Note that for gdbl and gdb19, D-MAENS
and LMOGA both reached the minimal value 0 of Ip. This
shows that for this two instances, D-MAENS and LMOGA
both consistently found all the Pareto-optimal solutions in all
of their 30 runs. For the rest two instances (gdb2, gdb13), D-
MAENS still provided the smallest average Ip, although they
cannot be statistically distinguished from that of LMOGA.

Then, we consider A. From the tables, it is seen that
D-MAENS performed significantly better than others for
10 instances. LMOGA performed significantly the best for
none of the instance, while NSGA-II performed significantly
the best for 3 instances. There are 10 instances on which
none of the algorithms showed significantly the best perfor-
mance. Among them, D-MAENS provided the best A for
4 instances. LMOGA obtained the best A for 4 instances.
NSGA-II got the best A for 3 instances. Note that for gdbl
and gdbl9, although D-MAENS and LMOGA consistently
found all of the Pareto optimal solutions in the 30 runs, their

A’s were either statistically comparable with or significantly
outperformed by that of NSGA-II. This shows that the
Pareto optimal solutions of these instances are not uniformly
distributed.

Finally, the algorithms are compared in terms of Ix. It is
observed that D-MAENS provided significantly the greatest
Iy for 20 instances. LMOGA performed significantly better
than others on 3 instances, while NSGA-II was unable to sig-
nificantly outperform others for any instance. As mentioned
before, D-MAENS and LMOGA both consistently found all
the Pareto-optimal solutions in all of their 30 runs for gdbl
and gdb19. Therefore, for this two instances, D-MAENS and
LMOGA obtained the same [g’s, which are significantly
greater than that obtained by NSGA-IIL.

VI. CONCLUSION

Being a well known combinatorial optimization problem,
CARP has been formulated as a single-objective problem by
most of researchers. However, in many real world applica-
tions, there usually exist more than one objective, e.g., the
total cost and the balance of routes in SRO. In this paper,
we investigated the more realistic MO-CARP and attempted
to minimize the total cost and makespan simultaneously.

As a multi-objective combinatorial optimization problem,
MO-CARP contains the difficulties caused by both MOP
and combinatorial optimization problem. In our research,
we discuss the important issues in solving MO-CARP with
EAs and evaluate the existing strategies for addressing these
issues in the case of MO-CARP. Guided by the discussions,
we incorporate the strength of SO-CARP approaches and
EMO strategies by combining the competitive SO-CARP



approach MAENS and proper EMO strategies including a
decomposition-based framework, and proposed the resul-
tant D-MAENS. Experimental studies were carried out by
comparing D-MAENS with LMOGA and NSGA-II on the
gdb test set, and the results demonstrate that D-MAENS
performed significantly better than the other compared algo-
rithms. This verifies the efficacy of the incorporation of the
strength of SO-CARP approaches and EMO strategies and
the importance of employing local search in solving MO-
CARP.

ACKNOWLEDGEMENT

This work is supported by IEEE Walter Karplus Summer
Research Grant, the Fund for Foreign Scholars in University
Research and Teaching Programs (Grant No. B07033) and an
EPSRC grant (EP/E058884/1) on “Evolutionary Algorithms
for Dynamic Optimisation Problems: Design, Analysis and
Applications.”

REFERENCES

[1] H.Handa, D. Lin, L. Chapman, and X. Yao, “Robust solution of salting
route optimisation using evolutionary algorithms,” in Proceedings of
the 2006 IEEE Congress on Evolutionary Computation, pp. 3098—
3105, 2006.

[2] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: a CERCIA experience,” IEEE Computational
Intelligence Magazine, vol. 1, no. 1, pp. 6-9, 2006.

[3] M. Dror, Arc routing. Theory, solutions and applications.
Kluwer Academic Publishers, 2000.

[4] B. Golden and R. Wong, “Capacitated arc routing problems,” Net-
works, vol. 11, no. 3, pp. 305-315, 1981.

[5] B. Golden, J. DeArmon, and E. Baker, “Computational experiments
with algorithms for a class of routing problems,” Computers and
Operations Research, vol. 10, no. 1, pp. 47-59, 1983.

[6] G. Ulusoy, “The fleet size and mix problem for capacitated arc
routing,” European Journal of Operational Research, vol. 22, no. 3,
pp. 329-337, 1985.

[7]1 A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the
capacitated arc routing problem,” Operations Research, vol. 48, no. 1,
pp. 129-135, 2000.

[8] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “Competitive memetic
algorithms for arc routing problem,” Annals of Operational Research,
vol. 131, no. 1-4, pp. 159-185, 2004.

[9] J. Brandao and R. Eglese, “A deterministic tabu search algorithm

for the capacitated arc routing problem,” Computers and Operations

Research, vol. 35, no. 4, pp. 1112-1126, 2008.

Y. Mei, K. Tang, and X. Yao, “A Global Repair Operator for Capaci-

tated Arc Routing Problem,” IEEE Transactions on System, Man and

Cybernetics, Part B, vol. 39, no. 3, pp. 723-734, 2009.

——, “Improved Memetic Algorithm for Capacitated Arc Routing

Problem,” in Proceedings of the 2009 IEEE Congress on Evolution-

ary Computation (CEC’09), pp. 1699-1706, 18-21 May, Trondheim,

Norway, 2009.

K. Tang, Y. Mei, and X. Yao, “Memetic Algorithm with Ex-

tended Neighborhood Search for Capacitated Arc Routing Problems,”

IEEE Transactions on Evolutionary Computation, to appear (DOI:

10.1109/TEVC.2009.2023449).

C. A. C. Coello, “Evolutionary multi-objective optimization: a histor-

ical view of the field,” IEEE Computational Intelligence Magazine,

vol. 1, no. 1, pp. 28-36, 2006.

P. Lacomme, C. Prins, and M. Sevaux, “A genetic algorithm for a bi-

objective capacitated arc routing problem,” Computers and Operations

Research, vol. 33, no. 12, pp. 3473-3493, 2006.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,”

Numerische Mathematik, vol. 1, pp. 269-271, 1959.

Boston:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

(33]

J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference
on Genetic Algorithms, pp. 93—100, 1985.

J. D. Knowles and D. W. Corne, “The Pareto archived evolution
strategy: a new baseline algorithmfor Pareto multiobjective optimi-
sation,” in Proceedings of the 1999 IEEE International Conference on
Evolutionary Computation, pp. 98-105, 1999.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257-
271, 1999.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” in Proceedings of Evolution-
ary Methods for Design Optimization and Control with Applications
to Industrial Problems, pp. 95-100, Athens, Greece, 2002.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712-731, 2007.

M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR Spectrum, vol. 22,
no. 4, pp. 425-460, 2000.

——, “Approximative solution methods for multiobjective combina-
torial optimization,” Top - The Journal of the Spanish Statistical and
Operations Research Society, vol. 12, no. 1, pp. 1-63, 2004.

H. Ishibuchi and T. Murata, “Multi-objective genetic local search algo-
rithm and its application to flowshop scheduling,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C, vol. 28, no. 3, pp. 392-403,
1998.

A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European Journal of Operational Research, vol. 137,
no. 1, pp. 50-71, 2002.

——, “On the performance of multiple-objective genetic local search
on the 0/1 knapsack problem - a comparative experiment,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 402—
412, 2002.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evo-
lutionary Algorithms: Empirical Results,” Evolutionary computation,
vol. 8, no. 2, pp. 173-195, 2000.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings of the 2002
Congress on Evolutionary Computation (CEC’02), vol. 1, pp. 825-
830, 2002.

M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR Spectrum, vol. 22,
no. 4, pp. 425-460, 2000.

H. Ishibuchi and T. Murata, “A multi-objective genetic local search
algorithm and its application to flowshop scheduling,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C, vol. 28, no. 3, pp.
392-403, 1998.

J. S. DeArmon, “A comparison of heuristics for the capacitated
Chinese postman problem,” Master’s thesis, University of Maryland,
College Park, MD, 1981.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Fonseca,
“Performance assessment of multiobjective optimizers: an analysis
and review,” IEEE Transactions on Evolutionary Computation, vol. 7,
no. 2, pp. 117-132, 2003.

P. Czyzzak and A. Jaszkiewicz, “Pareto simulated annealing - a meta-
heuristic technique for multiple-objective combinatorial optimization,”
Journal of Multi-Criteria Decision Analysis, vol. 7, no. 1, pp. 3447,
1998.



