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Abstract—Being a black box model, one of the most prominent
problem of deep learning research is the uncertainty of achieving
convergence towards the global optimum solution. In this project
report, first this problem has been discussed. Then considering
the case of generative adversarial network (GAN), the theoretical
analysis of convergence has been elaborated with the aid of
evolutionary algorithms. Also a brief analysis on the evolutionary
algorithm as reinforcement learning policies has been explored.
The goal of this project is to explore the pathway for the
development of a hybrid machine learning paradigm.

Index Terms—Deep Neural Network, Gradient Descent, Gen-
erative adversarial network, Generator, Discriminator, Nash
equilibrium, Reinforcement learning, Evolutionary algorithm,
Differential Evolution, Evolutionary strategy.

I. INTRODUCTION

EEP learning [1] research has seen unprecedented growth

in the recent years in a plethora of fields. But it is widely
considered to be a black box model. There are multiple justi-
fied reasons behind such an inference about deep learning. The
main factor is the fact that the convergence in the very deep
neural networks are really difficult to achieve [2]. In general,
gradient based techniques [2] are used to train the deep neural
network. There are hardly any strong theoretical basis for
justifying the practical tricks, which are used in training and
constructing deep nets. No theoretical guarantee of reaching
desired global optimum solution could be claimed in such
training, unless some specific conditions (example: Robbins-
Monro, etc.) are enforced, which heuristically motivate the
network to converge. There are always high probability of
getting stuck in a local optimum solution.

As there are numerous varieties of deep neural network,
this study is specifically focused on the convergence issues
of the generative adversarial network (GAN)[9]. It is a very
recently proposed promising example of the generative model
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family. In general, a typical generative model is capable
of learning the distribution of the training set to estimate
the distribution explicitly and/or to generate samples from
the learned distribution. Most of the variants of generative
adversarial networks concentrate on the task of generating
samples.

In this project report, at first the possibilities of utilizing
different evolutionary algorithms for training a neural network
have been explored. The specific advantages and disadvantages
of training a neural network with this family of algorithms,
which are observed in the work, have been noted. After that
the theory of GAN has been described very briefly with certain
remarks about its architecture. Then the theoretical analysis of
the convergence in GAN through training using evolutionary
algorithm has been described. Next the idea of treating re-
inforcement learning policy [2] as evolutionary computation
techniques is explored from a theoretical viewpoint. In the
final section, a conclusion is drawn with directions towards
future extension of this project.

II. NOTES ON NEURAL NETWORK TRAINING USING
EVOLUTIONARY ALGORITHM

In the neural network, the resultant output of the network
can be considered as the function of the inputs = and the
connection weights W. Here the idea is to minimize the
error function, which itself is a function of the input and the
output of the network. Thus from the optimization viewpoint,
the error function is the objective function. Therefore, this
optimization goal is achieved by tuning the weights of the
network, as the initial inputs to the network will be fixed.

We have followed mainly few different ways [3][4][5] [6][7]
of training the network utilizing evolutionary algorithms. For
the sake of simplicity, we have restricted the studies to just
simple multi layer perceptron (MLP) for exploring different
attributes of training by evolutionary algorithms.

Quantitatively in all of the approaches, there are no sig-
nificant improvement over the standard gradient descent. Not
only this, but also the neural network seems to suffer from
learning stagnation from training in those schemes. Still from
the observation, it can be concluded that evolutionary algo-
rithm could be used to train neural networks when the error
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surface tends to be very rough, leading to infrequent gradient
information.

In gradient descent, it is not possible to use differentiable
function as the error function while training. Sometimes
for certain error surfaces, it might be easier to use non-
differentiable function for training the neural network. In the
scheme of training using differential evolution there are no
such strict restrictions over the error function. Here non-
differentiable functions may be used.

Also as evolutionary algorithm does not get affected over
the rate of descent with respect to the corresponding gradient,
it remains unaffected from the occurrence of saddle points,
which could be a significant detrimental factor for gradient
based learning [8].

A. Notes on Generative Adversarial Network (GAN) Architec-
ture

The unprecedented generative success of generative adver-
sarial network [9] among all the state-of-the-art generative
models [10] [11] [12] [13] can be attributed to its game
theoretic base. It constructs the generative model by consti-
tuting a two player minimax game [14]. A generator network,
being one of the players, seeks to generate synthetic data
samples from the input noisy samples, drawn from a prede-
fined distribution. Meanwhile the discriminator network, the
other player, will go on to distinguish between the generated
synthetic results and the samples, drawn from a real dataset.
Based on the feedback from the discriminator network, the
generator network will be continuously trained to fool the
discriminator network to make it believe the synthetic samples
being no different from the real samples. Generally massive
deep learning architectures [1] are used as discriminator and
generator networks [15] [16].

Mathematically, both players are represented by two differ-
entiable functions. The discriminator can be represented as a
function D which takes z as input and its parameters can be
described as (7). Analogously the generator can be portrayed
as a function G, which takes z as input and its parameters can
be defined as #(%). The cost of the discriminator can be defined
as,

1
J(D)(G(D)a Q(G)) == i]El'NI)data(l‘) log D(x)
6]

_ %Ezwpz(z) log(1 — D(G(2))).

Here pgqtq(x) and p,(z) are the training data distribution and
generator input noisy distribution respectively. A simplified
version of the proposed game is zero sum game. So the cost
of the generator can be expressed as following,

J (Q(D)ﬁ(G)) - fl](D)(g(D)’ Q(G)). )

It can be easily perceived that the discriminator cost expres-
sion is nothing but the standard cross-entropy cost which is
minimized when training a standard binary classifier with a
sigmoid output. For better generalization, it is trained on two
minibatches of data from the real dataset (the corresponding

labels are 1) and from the synthetic generated samples (where
the corresponding labels are 0). Thus the discriminator will
always try to minimize its cost, while having the control
of only #(P), In parallel the generator will look forward to
minimize its own cost by controlling only 6(%). Therefore each
player’s cost depends on the other player’s parameters, though
each player cannot manipulate the other player’s parameters to
gain advantage. Goodfellow et al. [9] claimed that instead of
expressing this ensemble as an optimization problem between
the agents, it would be more straightforward to portray this as a
game between these two players, which would have a solution
as a Nash equilibrium [14]. So the game would terminate at
this saddle point, which would be a local minimum of J (D)
with respect to #(P) and a local maximum of .J(%) with respect
to #(S). Therefore this complete game theoretic framework can
be conceived as the following value function for the game,

min maz V(0P 9Dy = — jP)(gP) (@) (3)
9(G) 9(D)
Goodfellow et al. [9] have shown that the learning of both
those networks closely resembles minimizing the Jensen-
Shannon divergence between the training data and the model
distribution.

B. Theoretical Analysis of Convergence in GAN Through
Evolutionary Algorithm

To analyze the convergence of generative adversarial net-
work theoretically, our strategy would be to consider value
functions of the discriminator and the generator separately.
Now the goal is to show p, converging to pgate, Where
pg is the generator’s distribution over x. Here instead of
considering training by the evolutionary algorithm in general,
we will consider a specific algorithm variant from evolutionary
algorithm family. It is considered for this study that for the
standard training of the GAN, the periodic updates to the
weights of both the generator and the discriminator networks
are done by differential evolution algorithms. As there are
multiple prominent works [20][21], which have already been
done exploring the convergence properties in differential evo-
lution, here the objective of selecting differential evolution is
to exploit those studies.

As both the networks continue to update with respect to
each other’s outputs with time, so the whole network would
be in dynamic state continuously. Both the value functions are
complex multimodal functions. So in case of gradient descent,
there are high probability of getting stuck to local minimas [2],
which might lead to non convergence of the whole network,
even if the weight training is carried out for infinite amount
of time.

In case of using differential evolution based training, if
theoretically the training is carried out for infinite amount of
time, then Ghosh et al. [20] have shown that the probability
density functions (PDF) of the trial solutions (optimum set
of weights benefiting the network’s goal) would focus over
the global optimum of the objective function. Here they
have assumed that the function would take the shape of a
Dirac Delta distribution [23]. They have proved the same by
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defining a Lyapunov functional [22] based over the PDF, which
monotonically decrease.

Now from eq. 3, it can be seen that this is working over
parametric space strictly. So to prove the convergence of
the network by the scheme described by Ghosh et al., the
value function needs to be converted to explicitly work in the
space of the probability density functions of the generator (or
discriminator).

The value function of the network in eq. 3 is written over the
cost of discriminator. Therefore to achieve the above aim, first
the optimal discriminator function D is required by keeping
the generator function G fixed. Now as explained in the section
IL.A, to get the optimal discriminator, V(H(D ), G(G)) needs to
get maximized for a fixed generator G. So the value function
will be

V(D) 6@) = / Puata(z) log(D(x))dx
v 4)

+ / p-(2)log(1 — D(G(=)))dz.

Please note that here the —% term has been avoided for the
sake of convenience in calculation. It can easily be shown that
this function becomes maximum at Dg(x) #%
Here the generator G defines the probability distribution pg,
when z ~ p,.

So from eq. 3, it can be said that value function of the
minimax game between the generator and the discriminator

network could also be written as
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In this manner by converting the value function of the
network into the space of the probability density functions,
it can be shown to achieve convergence theoretically by the
scheme described above.

Even though, it sounds lucrative to train GAN with DE
based approaches, but it might not be practically feasible. Be-
cause the inherent consideration for the theoretical guarantee
of convergence is the continuous training for infinite amount of
time. So going with our explored works, the resultant remark
would be to train the GAN with variants of gradient based
training only. But from our analysis, it can be inferred that
the convergence can be achievable in every instances of GAN
through the training by differential evolution algorithms.

C. Theoretical Justification of Heuristical Tricks Used in GAN
Training

Also the heuristic tricks described by Sallisman et al. [18]
mainly stresses on subdividing/modifying the goal of the
optimization task. The most important and highly used two
tricks are feature matching and historical averaging. Feature

py() 1

matching is changing the goal of generator to generate data
based on only some features isolated by the discriminator. In
historical averaging, the cost functions of both the networks
at a particular iteration get modified depending on the values
of the parameters occurred at every previous iterations of the
training.

Now in a gradient based learning system, there are no
strong theoretical justification towards adapting these heuris-
tical modifications. But in a evolutionary algorithm based
training scheme, it could be pretty straight forward to claim
that feature matching has been done to favor the strong traits
of the current generations to imbibe in the future generations
of the solution set. In a similar fashion, historical averaging
could be considered as a modified mutation strategy to achieve
higher fitness.

D. Reinforcement Learning Simulation

In the next phase, evolutionary computation has been ex-
plored as the substitute to Markov decision process (MDP)
based reinforcement learning (RL) policies [19]. Evolutionary
strategy (ES) has been used as the alternative to reinforcement
learning policies in this case. No strong theoretical motivation
could be found from this study. But some prominent heuristi-
cal advantages have been observed such as, ES is invariant
to action frequency and delayed rewards in similar tasks.
Meanwhile ES does not need value function approximation,
unlike standard reinforcement learning policies. It was evident
that the high parallelizing capability of evolutionary strategy
would be the main reason to support this scheme of simulation
RL policies. Still if a MDP contains GAN as an actor critic
method [17], it would be possible to assess its convergence
theoretically from the above studies.

III. CONCLUSION

Though evolutionary algorithms do not enjoy any quan-
titative advantages over gradient based methods for training
neural networks, but we have shown that they have been able
to give better theoretical justification towards guaranteeing its
convergence, which is highly vital to understand the inner
workings of deep neural networks. We have also explored
some other specific pitfalls of evolutionary algorithm based
training. Further we have analysed the connection between
GAN and reinforcement learning, with evolutionary algorithm
being a substitute of reinforcement learning policies.

In future, we are looking forward to extend this work
in some promising ways. First, we will try to extend our
theoretical analysis in a more rigourous mathematical form for
other variants of deep neural networks to achieve generalized
solutions. It can be realized from a practical viewpoint that
both gradient based learning and evolutionary algorithm based
training are not suitable for every problems. Thus we will
try to design a hybrid learning algorithm, which would be an
amalgamation of both evolutionary algorithms and gradient
based algorithms. This would utilize favorable traits from
both the areas for better search towards convergence. Most
importantly, for the sake of simplicity, we have restricted
our studies of convergence of deep neural networks over the



IEEE COMPUTATIONAL INTELLIGENCE SOCIETY GRADUATE STUDENT RESEARCH GRANTS REPORT, 2017 4

theoretical side only. So we will try to generate practical
simulations for these cases, which would be congruent to our
developed theoretical analysis of convergence.
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