
A Distributed Approach to Design Satellite
Tracking System

Saeid Samadidana,Student member,IEEE
Tandy School of Computer Science

The University of Tulsa
Tulsa, Oklahoma, USA

Email: saeid-samadidana@utulsa.edu
Supervisor: Dr. Roger Mailler

Abstract—Tracking the satellites is a costly and difficult to
manage task. To do this task many telescopes around the world
are used. Each telescope is responsible for a few satellites
during the tracking time. The task of tracking a satellite is to
assign it to a telescope at proper time to capture the satellite
movement. Therefore, this task can be seen as a distributed
problem in which different nodes collaborate with each other
to satisfy the goal. The satellite tracking problem can be seen
as a Distributed Constraint Satisfaction Problem and to solve
that many distributed algorithms can be applied. We apply the
Distributed Probabilistic Protocol to accomplish this task. To
have a better vision of the problem, an application is required to
process the captured images from sky to track the moving objects.
Hence, we develop an application called Sky Simulator to tackle
the tracking problem. In addition, we show some experiments and
problems associated with tracking the satellites. Some of these
problems are limited time slots and light pollution. This project
also provides a test environment for image processing projects
with the ability to add additional features. Many processes can be
done with this application before doing the tracking of satellites
that reduces the cost associated with capturing and tracking the
real objects.

I. INTRODUCTION

Tracking the satellites in the sky is a difficult and costly
task that needs to be planned frequently. Different telescopes
must be applied to do this task as the number of satellites
is increasing. In addition, the number of telescopes that are
used for this task is limited, therefore a very precise model
must be developed to optimally schedule tracking of the
satellites. It must be considered that due to some limitations
each telescope can monitor a few satellites during the 24 hours
period. Problems like light pollution, bad weather conditions,
telescope size and etc. can make this task even more difficult.
Therefore, scheduling the tracking time slot needs to be fast
and be able to handle the immediate changes in the system. In
this study, we use the DPP protocol[3]) to tackle this problem.
In addition, we developed a simulator to simulate the moving
objects in the sky.

In the first years of developing computers, many scientist
were designing the centralized algorithms to solve a problem.
On that time, mostly inputs of a problem were given to a
system and the output was produced on the same system
and problems were mostly centralized. However, due to some

limitations like change in the problems’ sizes, memory and
security issues [17] the need for developing the Distributed
Algorithms raised. One of the practical example of distributed
problems is tracking the satellites by telescopes that are
developed on earth. It is clear that this problem is distributed
by time and location and is very complex as the problem is
constantly changing during the time. Indeed, the discussing
problem is a type of problems known as Dynamic Distributed
Constraint Satisfaction Problems(DynDCSP). Usually, these
problems are measured by the change rate. In our discussing
problem, the change can be seen as a new satellites is being
visible to one telescope or a satellites is being invisible from
the view of the telescope. One can see that the change rate in
this problem is very high and in just few seconds a problem
might change. Algorithms like MGM [1], DSA [2], DPP [3],
and DBA [4] are just a very few examples of algorithms
that are designed to solve these problems. In addition to this
problem, it is very easy to see different problems as distributed
algorithms like distributed resource allocation [15], distributed
scheduling [16], distributed planning [14], and distributed
routing [6].

As we explained the time is a very important factor in the
satellites scheduling problem. Therefore, we used the DPP in
this project because it considers the problem based on time
and it uses a priori knowledge to solve the problem.

The structure of this study is as follows: In Section II
we describe the DCSP problems. In Section III we explain
the DPP algorithm. In Section IV we talk about the Object
tracking system including the hardware design and its detail.
In Section V we talk about the Sky Simulator an image
processing software that is developed to simulate the sky. Then
we provide an explanation of how tracking the satellites can
be considered as an DCSP problem and we use DPP algorithm
to solve some problems in Section VI. Finally, in Section VII
we conclude the study and provide some approaches for future
work.

II. PROBLEM DESCRIPTION

Following is the formal definition of a Distributed Con-
straint Satisfaction Problem (DCSP) [9]:
• a set of n variables: V = {v1, . . . , vn},

• a set of g agents: A = {a1, . . . , ag},
• discrete, finite domains for each variable:

D = {D1, . . . , Dn},
• a set of constraints C = {c1, . . . , cm} where each

ci(di,1, . . . , di,j) is a function ci : Di,1 × · · · × Di,j →
{true, false}.

The objective of the problem is to find an assignment
S = {d1, . . . , dn} of domain values such that all constraints of
C are satisfied or to conclude that no such assignment exists.
CSP and DCSP problems are known to be NP-Complete.
Therefore, in many cases an approximate solution is desired.
One can see that in a problem like tracking the satellites
finding the optimal solution in a way that all satellites could
be monitored all the time is almost impossible. In DCSP
problems, usually we use the term agent that is used to manage
and handle the variables. Without the loss of generality, it
is often assumed that each agent is responsible for only one
variable. Each agent then tries to solve its assigned variables
constraints while collaborating with other agents to solve the
whole problem. This collaboration is done by communicating
some type of messages. In our problem, the constraints can
be defined as the relation between a satellite and a telescope.
Therefore, to satisfy the constraint agents collaborate with
other agents to find the best time for a telescope to track the
satellite.

Two important factors density (p1) and tightness (p2) are
defined in DCSP problems to categorize them. These param-
eters are directly related to the difficulty of the problem and
are defined as:
• p1 = 2c/n(n− 1)
• p2 = #false assignments/#total assignments

In which n is the number of variables and c is the number
of constraints. In addition to these two parameters sometimes
it is useful to use another parameter average degree that is
defined as d = c/n.

III. DISTRIBUTED SCHEDULING ALGORITHM

In this section we briefly explain the Distributed Probabilis-
tic Protocol (DPP) [3] that is designed to rapidly solve the
DCSP problems. DPP is based on using fewer messages as
much as possible. The key point of DPP is that agents do not
need always to communicate with their neighbors. Indeed in
DPP, agents predict the behavior of their neighbors even if they
have not communicated with them for a while. Furthermore,
agents do not wait for messages from their neighbors if they
believe that they have the highest improve value amongst their
neighbors.

To accomplish this goal, agents use a function called prob-
ability distribution function(PDF) of improve values based on
their constraints. Protocol starts with each agent sending its
DPP value plus its initial value to its neighbors. Each agent
then in every cycle calculates two values called improve and
change probabilities. The first one is used to determine when
an agent should send the improve value to neighbors. This
kind of message is called improve? message. This value is

calculated based on the error in neighbors predication. To
calculate this value, each agent must receive the improve
probabilities from its neighbors. Beside, it needs to use the
most recent improve value it has sent to its neighbors. In
addition it needs to use PDF values.

PDF values must be calculated once when an agent knows
about its neighbors and constraint tables. Different methods
can be applied to calculate the PDF values. One method is
to calculate the PDF values for each agent based on the
constraint tables. It is obvious that by increasing the number of
neighbors of an agent the probability of having higher improve
values is very small and close to zero. Based on the empirical
experiments done to calculate the PDF with this method is it
known that this is a very time consuming task. The second
method is to use a uniform probability value for all PDF
values. One drawback of this method is that the probabilities
are not distributed correctly. For example, the probability of
having one improve often is higher than having 10 improve
values. Therefore, same PDF values might decrease the solu-
tion quality. The third method is using an approximate values
based on empirical tests on different problems and getting the
mean value of probabilities of test cases. This method is quite
fast and can be used instead of exact values. In addition, one
may use the graph coloring PDF values for a random problem
as it is easier to calculate. These methods are compared in test
result section. Equation 1 shows the formula for calculating
the improve value.

P (improvetX = j|X = j ∧ improvet−1X = i)

= |P (Y ≤ j)− P (Y ≤ i)| (1)

On the other side, the change probability is used to calculate
the probability of changing the current value of an agents
variable. To do this, an agent multiplies the probabilities that
it has the highest improve value among all of its neighbors.
equation 2 shows this formula.

The fully explanation of DPP protocol can be found in [3].
DPP has shown to be very effective on Graph Coloring and
DCSP problems. Figure 1, Figure 2, and Figure 3 show the
different procedures used in the DPP. A simple DCSP problem
is shown in figure 4.∏

Y ∈neighs(X)

P (Y ≤ x|improvetY = i) (2)

IV. OBJECT TRACKING SYSTEM

In this section we explain the object tracking System built
to track the satellites. following is the list of hardware used in
this project.
• Telescope

For this project we used the 8 inches LX200−ACF R©
telescope. This telescope has the ability to install a
camera on it to capture the visible location as a video
or image file.

• Camera

procedure main
initialize;
while (not terminated) do

update agent view with ok? (xj , dj) messages;
update agent view with improve (xj , improvej)

messages;
calculate improve;
send ok;
send improve;

end do;
end main;
procedure initialize
pdfi ← calc improve pdf;
send ((init, (xi, di, pdfi)) to all xj ∈ neighbors;
while (not received init from xj ∈ neighbors) do

update agent view with incoming init (xj , dj , pdfj)
messages;
end initialize;

Fig. 1. The main and initialize procedures of the DPP algorithm.

procedure calculate improve
v ← the value with the least conflict (v 6= di);
if di has no conflicts or v has more conflicts than di

do
new value = di;
improvei ← 0;

else
new value = v;
improvei ← difference in conflicts between di and v;

end if;
end calculate improve;

Fig. 2. The calculate improve procedure of the DPP algorithm.

A WZO R© camera is installed on the telescope to capture
images and videos of the sky.

• Filters
Different filter used to have a better vision of the sky
during the night.

• High capacity storage device
It is used to store the video or image files. It is required to
capture the pictures with very high resolution therefore,
the size of files are extremely large.

• Satellites list
From each location on the earth just some satellites are
visible. Based on the longitude and latitude of the location
it is possible to get the list of passing satellites in a
specified time.
Figure 5 shows the telescope and its supplementary
equipment. The photo had been taken in Fall 2017. The

procedure send ok
if new value 6= di do
p← calc change probability;

if random < p
di ← new value;
send ((ok?, (xi, di)) to all xj ∈ neighbors;
improvei ← 0;

end if;
end if;

end send ok;
procedure send improve

for all xj ∈ neighbors do
p← calc improve probability(xj);
if random < p

send ((improve, (xi, improvei)) to xj ;
end if;

end do;
end send improve;

Fig. 3. The send ok, and send improve procedures of the DPP algorithm.

Fig. 4. A simple DCSP problem

figure shows the camera installed on telescope and the
camera is connected to a laptop to transfer the images to
the computer. The process of adjusting the camera must
be started a few minutes before sunset.

A. Tracking Limitations

There was some limitations for tracking the satellites. Fol-
lowing is the list of problems for tracking the satellites.

– light pollution
The first issue was the light pollution. Satellites
mostly are visible in dark sky. Therefore, finding
a place with minimum light pollution was difficult.
This place must be far from the cities.

– Telescope Adjusting
Before starting the tracking, telescope needs to be
adjusted. Based on the experiments between 30 min-
utes to one hour is required to adjust the telescope.
The adjustment of the telescope is based on locating

Fig. 5. An experiment done in Fall 2017

some famous stars like polar star. Therefore, the sky
must be dark to adjust the telescope. Of course,
adjusting the telescope might be different in different
telescopes. In the telescope used in this project
the process for adjusting the telescope was almost
automatic. The process starts with finding the exact
location of the telescope using GPS that exists in the
telescope. Then, as mentioned some starts are used
to adjust the telescope.

– Weather Condition
Satellites are visible just in a clear sky with minimum
clouds. Therefore, having a nice weather is a need.

– File Storage
Capturing the video of moving objects in sky needs a
very high resolution. Therefore, a storage equipment
like external hard drive was required to store the
video files. A free software is used to capture the
video. The camera is installed on the telescope. Some
parameters like exposure time, resolution must be
adjusted to have a clear screen.

– Tracking Time Slots Limitation
Interestingly, there is just a limited time slot to track
the satellites. If the sky is not dark enough then
satellites are not visible due to lightness and if it is
too dark they are not visible too. Therefore, a time
slot of about one hour after sunset was the proper
time to track the satellites.

V. SKY SIMULATOR

In this section we talk about an image processing application
that has been developed to track the moving objects in sky
and simulates the sky for image processing purposes. To track
the objects the Otsu method[13] is used. The algorithm for
detecting objects in filtered image is as follow. The filtered
image, is examined pixel by pixel to detect the objects. When-
ever a pixel with different color with background is found

Fig. 6. Object Tracking flow chart

then algorithm tries to find a diagonal to where objects shape
is continued. Then, Algorithm tries to check the boundary
of the image to make sure the object is surrounded by the
large enough rectangle. When no different color is found then
algorithm creates a rectangle and sets all pixels in the rectangle
as checked pixel. This prevents from the problem of finding
an object several times. Then, algorithm finishes detecting
objects and draws the rectangles around the found objects.
This process repeats until all frames are processed. Figure 6
shows the simple flow chart of the algorithm.

The sky simulator consists of three setting sections and one
video panel. The first section is about general setting including
speed of earth, refresh time and the darkness of the sky. The
Second section is about creating constant objects in the sky
with the ability to randomly put the objects in the

A. Tracking Algorithm

In this section the general approach used for tracking
the objects is explained then the implemented software is
described. The algorithm implemented in this study is as
follow. First the video is loaded, then the first frame is read
and is converted to the gray scale. To convert an RGB image
to a gray scale different method can be used that are
• Average
• Lightness
• Luminosity PAL
• Luminosity HD
The difference between these methods are the ratio of using

red, green and blue colors in the gray image. The table I shows
how the gray image is obtained by using different methods.

The converted images by all methods for several test images
were almost same therefore the average method is used in

TABLE I
RGB TO GRAY SCALE METHODS

Method Name Formula for RGB to Gray
Average (red + green + blue) / 3

Lightness Max(blue, Max(red, green)) + Min(blue, Min(red, green)) / 2
Luminosity HD (0.2126 * red + 0.7152 * green + 0.0722 * blue)
Luminosity PAL (0.299 * red + 0.587 * green + 0.114 * blue)

this study. Then Otsu method is used to find a threshold
for separating the background and foreground of the image.
Then the algorithm for finding the objects on the filtered
image find the objects and stores them. Although this step
is not required for the first image however, it can make the
differentiating the images faster as the approximate location of
objects are already determined. After reading the first frame
the next frame is read and is converted to gray. Then it is
compared with the previous frame and Otsu method again find
the threshold and the algorithm for finding the objects detects
the moving object and draws a rectangle around them. The
flowchart of the Object Tracking algorithm is showed in the
following chart.

The algorithm for detecting objects in filtered image is
as follow. The filtered image, is examined pixel by pixel to
detect the objects. Whenever a pixel with different color with
background is found then algorithm tries to find a diagonal
to where objects shape is continued. Then, Algorithm tries to
check the boundary of the image to make sure the object is
surrounded by the large enough rectangle. When no different
color is found then algorithm creates a rectangle and sets all
pixels in the rectangle as checked pixel. This prevents from
the problem of finding an object several times. Then, algorithm
finishes detecting objects and draws the rectangles around the
found objects.

The discussed algorithm implemented in the Sky Simulator
software. In the next section the implemented software and its
features is explained.

B. Sky Simulator Software
In this section the implemented software is explained.

This software includes the setting sections for creating the
simulated video of sky and the moving objects and processing
the simulated video. Following are the sections of the software:
• Settings

– General Setting
This section includes the speed of earth, refresh time
of sky screen panel and the darkness of the sky.
Table II shows the range of values for the settings.
The refresh rate indicates the speed of updating
the panel. The higher speed refreshes the screen
faster. In addition this value is used to determine
the frame rate of the video that will be saved. The
ratio is defined as 1000/refresh rate. The darkness
ranges from 0 to 255 and a lower value indicates the
darker background and a larger value shows a lighted
background. The Start and Stop buttons are for
starting and stopping the capturing the video from

Fig. 7. Sky Simulator General Setting

Fig. 8. Sky Simulator Moving Object Setting

the video panel. Whenever, user clicks the Start
buttons in every determined time the panel will be
refreshed and the last image of the panel will be
saved as a video frame. When user clicks the Stop
button, the video will be end and can be saved. It
is possible to add additional frames to the existing
video by clicking the Start button again. The figure
7 shows the General Setting panel.

– Moving Object Setting
This section is for creating moving objects in the
sky. User can determine the size of the object, its
speed and radius and create the object by both
dragging the shape in the panel to the video panel or
by clicking the create object button, provided that
the Random Position check box is selected. This
option, randomly places the object in the video panel.
In addition, user can remove all constant objects by
clicking the Clear Objects button. The figure 8
shows the Moving Objects Setting panel.

– Constant Object Setting
This section is for creating constant objects in the
sky. User can determine the size of the object and
creates the object by both dragging the shape in the
panel to the video panel or by clicking the create
object button provided that the Random position
check box is selected. This option, randomly places
the object in the video panel. In addition, user can

TABLE II
RGB TO GRAY SCALE METHODS

Setting name Min value Max value
Earth Speed 0 (No move) 5
Refresh Rate 0 ms 1000 ms

Darkness 0 (Black) 255 (White)

Fig. 9. Sky Simulator Moving Object Setting

Fig. 10. A Sample test case of Sky Simulator

remove all constant objects by clicking the clear
objects button. The figure 9 shows the Constant
Objects Setting panel.

• Video Panel
This panel is designed to both show the video and
therefore processing the video and creating the simulated
video for processing. Whenever, user creates a moving or
constant object, then it is showed in this panel. General
settings, changes the darkness of the panel and the speed
of the earth.

– Save settings
It is possible to save all settings defined by the user.
By choosing this item, a save form will be appeared
that allows user to save the setting as a sss file. The
settings that will be saved are the general settings
including the earth speed, refresh rate and darkness,
the moving objects that is a list of them with the
information about their sizes and speeds, radius and
their locations, and the constant objects as a list of
them with the location and size information.

– Load settings
To load the settings user selects the Load Setting
and chooses a file with sss extension to load the
settings. After settings are loaded the screen will be

filled with defined objects if any exists. As mentioned
above the settings include the general setting about
the video and panel and a list of moving objects and
their locations and a list of constant objects and their
locations.

– Save Video
By selecting this menu, user can save the sky screen
panels images as video. The video starts by clicking
the Start button and finishes by clicking the Stop
button. The video will be saved as .wmv file. The
frame rate of the video is determined by the refresh
rate value. After refreshing the panel, the last frame
will be added to the video.

– Load Video
By selecting this menu, user can load the saved video
files with .wmv extension. After loading the video
the moving objects will be tracked automatically
with a rectangle around moving objects. If for any
reason, the video cannot be load an error message
will be shown to the user.

Figure 10 shows the Sky Simulator Software main page.

VI. TEST RESULTS

In this section, we show the result of running DPP algorithm
on DCSP problems. We created some random problems to
simulate the real problems of satellites tracking system. To do
the test we used the Farmx software developed in our lab as a
simulator to create and solve different DCSP problems. Then,
we used the following parameters for testing the problems.
• n = {100, 200, 400} where n is the number of vari-

ables/agents,
• density = {low,medium, high},
• p2 = {0.33}.
• |Di| = 3 where Di is the domain for variable i

First we compared the different ways of calculating the PDF
values. To do this, we created random problems and compared
the total number of messages that agents send during the exe-
cution of the algorithm. In addition, we compared the number
of conflicts based on each PDF calculation method. Figures 11
and 12 show the comparing among number of conflicts and
number of messages in different methods of calculating the
PDF values. As we expected the result of methods Normal
and Perfect is better than the others. The worst result belongs
to Uniform method as the number of conflicts is much higher
than the others. The Graph Coloring method also shows a
very good result. Both Graph Coloring and Normal method
are faster than Perfect method therefore, it is better to use
these methods instead.

TABLE III
CONVERGENCE RATE

Density Low Medium High
Variable Count 100 200 400 100 200 400 100 200 400

DPP 14.68 15.02 14.65 16.64 18.23 17.71 20.64 20.60 21.68

TABLE IV
CONVERGENCE POINT

Density Low Medium High
Variable Count 100 200 400 100 200 400 100 200 400

DPP 5.58 11.53 22.96 9.17 18.49 37.16 15.35 29.39 59.81

Fig. 11. Number of Conflicts based on different methods of calculating the
PDF

Fig. 12. Number of messages based on different methods of calculating the
PDF

We used three different degrees (2.0, 2.3, and 2.7) to eval-
uate the DPP. These degrees represent low, medium, and high
densities respectively. For example, a low density problem
with 200 variable problems had an average degree of 2.0,
400 constraints, and a p1 of 0.0201005. A problem with
400 variables, 800 constraints were generated and the p1 was
0.010025.

Following procedures is used to randomly generate a prob-
lem. First of all, variables are generated and assigned domains.
Then the constraints are generated by randomly selecting
two variables that do not have a constraint already between
them then randomly selecting combinations of values to false.

Finally, to each agent one variable is assigned and each agent
is known of its assigned variable constraints.

To measure the performance of the algorithms and be able to
compare different problems together we measure three things:
how fast an algorithm converges on a solution, the overall
quality of the solution, and total the number of messages
exchanged among agents. These values give an insight to
better understand the behaviour of the protocols and be able
to predict the algorithms performance on different problems.
In a paper by Mailler and Zheng [11] they showed that the
convergence rate is an important parameter in evaluating and
analyzing the DCSP problems. A very good result about
DCSP problem is that the convergence rate remains almost
unchanged as the problem size increases. This is shown in the
work of Ridgway and Mailler [12].

The tables III and IV show the convergence rate and
competence point for random problems with different den-
sities. When we talk about random problem it means that
the constraint table among variables are created by random
procedure. As results show by increase in the density of
the problems the convergence points becomes worse. This
completely makes sense as a problem with higher density
means more constraints and we expect to have more conflicts
in a problem with higher density. In addition, as we see in the
result the number of conflicts (convergence point) in problems
with 200 variables are almost twice the convergence point
of the problem with 100 variables. Furthermore, this pattern
follows in the problems with 400 variables and convergence
point is about twice the convergence point of the problems
with 200 variable.

VII. CONCLUSIONS

In this study, we introduced a new system for tracking the
satellites by defining the problem as a Distributed Constraint
Satisfaction Problem. Then we applied the DPP algorithm
to solve the problem and tested DPP on some examples. In
addition, we developed a software to track the object in the
sky that is able to simulate the moving objects in the sky
with some sky features like the darkness and speed of the
earth and satellites and size of stars etc. The software showed
to be working very well with different test cases and can be
used in real environment to track the satellites. In addition
we explained the Satellites tracking system structure and the

required hardware and the process of tracking the satellites. We
also mentioned some limitations associated with this system.

ACKNOWLEDGMENT

The author would like to thank Dr. Roger Mailler for his
support. This work is sponsored by the National Science Foun-
dation under Grant No. IIS-1350671 and partially supported
by the IEEE 2017 Graduate Student Research Grant.

REFERENCES

[1] R. T. Maheswaran, J. P. Pearce and M. Tambe, ”Distributed algorithms
for DCOP: A graphical-game-based approach,” in Parallel and Distributed
Computing Systems (PDCS), 2004.

[2] W. Zhang, G. Wang and L. Wittenberg, ”Distributed stochastic search for
constraint satisfaction and optimization:Parallelism, phase transitions and
performance,” in AAAI workshop on probabilistic Approaches in Search,
2002.

[3] R. Mailler, ”Using Prior Knowledge to Improve Distributed Hill Climb-
ing,” in IEEE/WIC/ACM international conference on Intelligent Agent
Technology, 2006.

[4] M. Yokoo and K. Hirayama, ”Distributed Breakout algorithm for solving
distributed constraint satisfaction problems,” in International Conference
on Multi-Agent Systems(ICMAS), 1996.

[5] R. Newton and W. Thomas, ”Design of school bus routes by computer,”
Socio-Economic Planning Sciences, vol. 3, no. 1, p. 7585, 1969.

[6] S. Samadidana, M. Paydar and J. Jouzdani, ”A simulated annealing
solution method for robust school bus routing,” International Journal of
Operational Research, vol. 28, no. 3, pp. 307-326, 2017.

[7] J. Park and B. Kim, ”The school bus routing problem: a review,” European
Journal of Operational Research, vol. 202, no. 2, pp. 311-319, 2010.

[8] J. Braca, J. Bramel, B. Posner and Simchi-Levi, ”A computerized
approach to the New York City school bus routing problem,” IIE
Transactions, vol. 29, no. 8, p. 693702, 1997.

[9] M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara, ”Distributed constraint
satisfaction for formalizing distributed problem solving,” in International
Conference on Distributed Computing Systems, 1992.

[10] A. R. Leite, F. Enembreck and J. P. A. Barthes, ”Distributed constraint
optimization problems: Review and perspectives,” Expert Systems with
Applications, pp. 5139-5157, 2014.

[11] R. Mailler and H. Zheng, ”A new analysis method for dynamic,
distributed constraint satisfaction,” in In Proceedings of the 2014 Interna-
tional Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 2014.

[12] A. Ridgway and R. Mailler, ”Dynamic Theoretical Analysis of the
Distributed Stochastic and Distributed Breakout Algorithms,” in 14th
International Conference on Autonomous Agents and Multiagent System,
2015.

[13] Otsu N., 1979, A threshold selection method from gray level histograms.
, IEEE Trans. Syst. Man Cybern (1979). SMC-9, 6266.

[14] Oscar Sapena and Eva Onaindia and Antonio Garrido and Marlene
Arangu, ”A distributed {CSP} approach for collaborative planning sys-
tems”,Engineering Applications of Artificial Intelligence, vol 21, no 5,
698-709,2008

[15] S. E. Conry and K. Kuwabara and V. R. Lesser and R. A.
Meyer,”Multistage Negotiation for Distributed Constraint Satisfac-
tion”,IEEE Transactions on Systems, Man, and Cybernetics,Vol 21, No
6,1991

[16] K. Sycara and S. Roth and N. Sadeh and M. Fox,”Distributed Con-
strained Heuristic Search”,IEEE Transactions on Systems, Man, and
Cybernetics, Vol 21, No 6, 1446-1461, 1991

[17] Saeid Samadidana And Roger Mailler,”Solving DCSP problems in
highly degraded communication environments”, WI ’17 Proceedings of
the International Conference on Web Intelligence, pages 348-355,2017

