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Abstract—Multi-component problems are optimization prob-
lems that are composed of multiple interacting sub-problems.
The components are mostly NP-complete problems which makes
solving such problems quite challenging. The concept of interde-
pendent components is very important in real-world problems,
mainly in industrial applications such as the optimization of
supply chains. The motivation of this work is to investigate
whether it can be better to consider multiple objectives when
dealing with multiple interdependent components. Therefore, the
Travelling Thief Problem, a relatively new benchmark problem, is
investigated as a bi-objective problem. In our experimental study,
an NSGA-II adaptation for the bi-objective model is compared to
two of the best known algorithms for the original single-objective
problem. The results show that the proposed EMOA does not only
generate a range of solutions, but is also competitive with the
state-of-the-art single-objective algorithms.

Index Terms—Interdependence; Multi-component problems;
Evolutionary Multi-objective Optimization; Travelling Thief
Problem

I. INTRODUCTION

In the CEC 2013 conference, Bonyadi et al. proposed
a benchmark problem called The Travelling Thief Problem
(TTP) [2, 14]. TTP combines the Travelling Salesman Problem
(TSP) and the Knapsack Problem (KP) in order to simu-
lates problems that are composed of multiple connected sub-
problems, known in literature as multi-component problems.
Since each sub-problem is an NP-complete combinatorial op-
timization problem, each component naturally has an objective
function to optimize.

In the original paper, the authors proposed two versions of
the problem: a mono-objective TTP (TTP1) and a bi-objective
TTP (TTP2). However, all published papers known to us are
only investigating the mono-objective version.

The first attempt to solve the problem efficiently was made
by Mei et al. [13] using a Memetic Algorithm. In the paper, the
authors also proposed speedup and approximation techniques
in order to solve large instances efficiently in under 10
minutes.

Faulkner et al. [10] proposed multiple routines which were
combined in different manners in order to design more sophis-
ticated heuristics. The best performing heuristic is named S5,
a simple heuristic that has two stages. First, the Lin-Kernighan
heuristic [11] was used to generate a tour independently

from the KP part. Second, after fixing the tour, an iterative
heuristic named PackIterative was used to create a picking plan
optimized accordingly to the fixed tour. This simple process
was shown to be very efficient as S5 was able to beat MATLS
and the other proposed heuristics for most TTP instances.

Since most proposed heuristics use Lin-Kernighan to ini-
tialize the tour, which is quite biased towards the TSP part,
Wagner [16] took a different path by investigating longer tours.
The author adapted a Max-Min Ant System, initially designed
for the TSP, to construct tours that are likely to be longer,
then uses state-of-the-art heuristics to improve the picking plan
accordingly. This approach is shown to be very efficient for
small TTP instances.

El Yafrani and Ahiod [9] recently proposed two heuristics
and carried on an empirical study to compare population-based
and single solution heuristics. The first proposed heuristic
is called MA2B, a memetic algorithm using 2-opt and bit-
flip local searches. The second is a combination of a 2-opt
local search and a simulated annealing based heuristic for
efficient packing, named CS2SA. The two proposed heuristics
were shown to be very competitive to MATLS and S5. MA2B
performs particularly well on small instances, while CS2SA
was more efficient on large ones.

In a tentative to propose a more realistic version of TTP,
Chand and Wagner [3] proposed a version that allows multiple
thieves, which is quite close to the Vehicle Routing Problem.
The paper also proposes a set of search heuristics for this
version of the problem.

In [8], the authors focus on designing a TTP specific
neighborhood instead of using a sequential structure as in most
heuristics. The results show that this approach was competitive
to EA and RLS on different small instances.

The motivation of this work is to investigate multi-
component problems as multi-objective ones by taking the
TTP as a benchmark problem. In this report, we are investigat-
ing the TTP as a bi-objective problem by considering traveling
time and profit as overall objectives.

The investigation of this bi-objective model allowed us to
see that the best known TTP solutions can be found in the
knee region of the Pareto front. The EMOA was even able to
compete with two of the best algorithms for the TTP and find



better solutions for the single objective model implicitly.
Using a multi-objective model is very beneficial in real-

world applications since it allows more freedom for the
decision makers. In our case, not only we were able to find a
trade-off of solutions for TTP, but our EMOA was competitive
even for the single-objective model on a sub-set of small TTP
instances.

The rest of this report is organized as follows: In Section
II, the original TTP is briefly revisited. Our bi-objective TTP
is defined in Section III. Section IV describes the proposed
EMOA and its components. Our strategies for tuning the
EMOA and experimental results are reported in Section V.
Finally, conclusions are drawn in Section VI.

II. THE TRAVELLING THIEF PROBLEM

In the TTP, as redefined by Polyakovskiy et al. [14], we are
given a set of n cities and a set of m items distributed among
the n cities. Each item k is defined by its profit pk and weight
wk. A thief must visit all cities exactly once, steal some items
on the road, and return to the first city.

In addition, we consider the following parameters and
constraints:

• The total weight of the collected items must not exceed
a specified capacity W .

• The knapsack is rented, and that the renting rate per time
unit is noted R.

• We consider that the thief has a maximum and minimum
velocities denoted vmax and vmin respectively.

• Each item is available in only one city. We note Ai ∈
{1, . . . , n} the availability vector, such as Ai contains
the reference to the city that contains the item i.

• To make the sub-problems mutually dependent, the speed
of the thief changes according to the knapsack weight.
Therefore, the thief’s velocity at city x is defined in
Equation 1.

vx = vmax − C × wx (1)

where C = (vmax − vmin)/W is a constant value, and
wx the weight of the knapsack at city x.

We note g(z) the total value of all collected items and
f(x, z) the total travel time which are defined in Equations 2
and 3 respectively.

g(z) =
∑
m

pm × zm (2)

subject to
∑
m

wm × zm ≤W

f(x, z) =

n−1∑
i=1

txi,xi+1
+ txn,x1

(3)

The overall objective is to maximize the travel gain, as
defined in Equation 4, by finding the best tour and picking
plan.

G(x, z) = g(z)−R× f(x, z) (4)

We will also refer to the gain function as the TTP score.
In our implementations, a TTP solution is naturally coded

in two parts. The first is the tour x = (x1, . . . , xn), a vector
containing the ordered list of cities. The second is the picking
plan z = (z1, . . . , zm), a binary vector representing the states
of items (0 for packed, and 1 for unpacked).

III. MULTI-OBJECTIVE TTP: THE PROPOSED MODEL

In this work, we propose to investigate the TTP as a bi-
objective problem, which we will simply refer to as MO-TTP.
Therefore, we consider the profit (g) and the travelling time
(f ) as the objectives as shown in Equation 5.

maximize g(z) (5)
minimize f(x, z)

Note that we keep all the other aspects of the single-
objective model, except for the renting rate. In fact, since we
are dealing with travelling time and profit separately, there is
no benefit on using R which basically acts as a weight in the
TTP’s formula.

In addition, The two objectives of MO-TTP are conflicting
due to the interdependence between the two sub-problems.
This interdependence is guaranteed by the changing speed
constraint in Equation 1.

This model is different from TTP2 which was proposed in
[2]. In fact, we do not consider the additional constraint which
supposes that the value of the items decreases with time.

IV. SOLVING MO-TTP

A. Overall algorithm

Our EMOA is based on the NSGA-II algorithm [5] imple-
mented using jMetal [7]. We define two disruptive operators
and two local search heuristics as NSGA-II mutations. The Null
Crossover is used to simply clone selected solutions into the
next generation. At each generation, the mutations operators
are applied, then the solutions are sorted using the non-
dominated sorting to construct multiple fronts. Afterwards,
the crowding distance is used to measure the proximity of
a given solution to its neighbors. The crowding operator will
prioritize the solutions located in a less crowded region. Based
on these two operators, the solutions for the next generation are
selected. The NSGA-II process is repeated until the stopping
criterion is met. In our adaptation, we use a runtime limit of
10 minutes as a stopping criterion. In the rest of this report,
we will refer to this algorithm as EMOA-TTP.

B. Initialization approaches

We use the Lin-Kernighan heuristic to generate the initial
tours [11]. As for the picking plans, we use the following
initialization strategies.

• Random picking plan (RPP): simply generates a ran-
dom picking plan, such as the total capacity does not
exceed the limit W .

• Greedy picking plan (GPP): the picking plan is gen-
erated using a greedy algorithm that uses a goodness



score to sort items. The score is based on approximations
of the benefit of packing/unpacking an item. The reader
is referred to [13] for further details about this greedy
algorithms.

• PackIterative (PI): this strategy is also based on a greedy
algorithm. Each item receives a goodness score that
depends on its profit, weight, and remoteness from the last
city in the tour. The profit and weight are strengthened
using an exponent. This process is repeated iteratively
and the exponent value is updated at each iteration.
Furthermore, since the objective function is very time
consuming, the frequency of its use is reduced. This
heuristic is explained in more details in [10].

The percentages of using each of these strategies is tuned
using the irace package, which we explain in Section IV.

C. Mutation operators

In our EMOA, we use the following two disruptive opera-
tors.

• Node insertion: this operator is applied to the tour. It
changes the position of one city, picked at random, in
the tour.

• Random bit-flip: this operator acts on the picking plan.
It goes through all the picking plan bits, flips the current
item depending on a probability of 10/m.

Given that the above operators are used for diversification
purposes. We also use the following two hill climber heuristics.

• 2-opt based local search: a hill climber that uses a
neighborhood generated using the 2-opt operator [4]. In
addition, the Delaunay triangulation is used to reduce the
complexity of the neighborhood [6].

• Bit-flip based local search: a hill climber using the bit-
flip operator to generate a neighborhood.

The fitness used in both local search heuristics is the TTP
score, and the stopping criterion is having no improvement
during a complete iteration.

D. Selection

We use a binary tournament selection alongside with the
crowding distance to determine which individuals will be
passed to the next generation.

In addition, we created a second version of the algorithm
in which we introduce another selection operator based on
the TTP score. The operator is induced before the crowding
distance selection in order to prioritize solutions with higher
TTP scores. We will refer to this selection operator as the
Biased Selection.

V. EXPERIMENTAL STUDY

A. Benchmark Instances

The experiments conducted are performed on a subset of
the TTP benchmark instances from [14]. The characteristics
of these instances vary widely, and in this work we consider
the following problem parameters:

• The number of cities is based on TSP instances from the
TSPlib, described in [15].

• For each TTP instance, there are three different types
of knapsack problems: uncorrelated, uncorrelated with
similar weights, and bounded strongly correlated types.

• For each TSP and KP combination, the number of items
per city (item factor, denoted F ) is F ∈ {1, 5, 10}

• For each TTP configuration, we use 3 different knapsack
capacities C ∈ {1, 5, 10}. C represents a capacity class.

Furthermore, we use the following representative small
sized TTP instance groups to conduct our experiments: eil51,
berlin52, eil76, kroA100, kroA150, u159, a280, pr439, rat575,
and rat783.

B. Parameter tuning

EMOA-TTP has many parameters that need tuning. These
parameters are presented in Table I and tuned using the
irace package [12]. The irace package is an R framework
that implements the iterated racing procedure, an extension
of the Iterated F-race procedure [1]. Its main purpose is
to automatically configure algorithms by finding the most
appropriate settings given a set of instances of an optimization
problem.

TABLE I: A list of the EMOA-TTP paramaters

Notation Description
pls2 Probability of applying the 2-opt based local search

operator
plsb Probability of applying the bit-flip local search op-

erator
pmui Probability of applying the node insertion operator
pmub Probability of applying the random bit-flip operator
N Population size
pir Proportion of individuals initialized using RPP
pig Proportion of individuals initialized using GPP
pip Proportion of individuals initialized using PI
rbs Biased selection replacement rate

The TTP library proposed by Polyakovskiy et al. [14] is a
rich and diverse database. Since the instances are very different
in size and type, we investigate multiple tuning strategies.
Table II describes all these tuning strategies.

The optimized parameters for each strategy are reported in
Table III. It is very difficult to interpret the configurations or
to see patterns, as the space is rather high-dimensional.

C. Results and discussion

Figure 1 represents the obtained Pareto front for a various
subset of solutions. Note that these results correspond to the SS
tuning strategy. The figures show that EMOA-TTP was able to
obtain a set of solutions that represent a tradeoff between time
and profit. We can also see that the best solutions regarding
the TTP score are concentrated in the knee region of the pareto
front. In addition, the solutions obtained using MA2B and S5
are always close to the knee region. This shows that the single
objective model is somehow contained in the multi-objective
model we investigated. Therefore, the TTP score is a simple
scalarization of a bi-objective problem by nature.



TABLE II: The strategies used for tuning EMOA-TTP

Notation Maximum num-
ber of experi-
ments

Description

DS 10000 (Diverse Set) Uses the following various set of instances for training: eil51, eil76,
kroA100, a280, pr439, rat575, rat783. This strategy considers all the parameters except
the biased selection replacement rate (rbs).

DS-BS 10000 (Diverse Set and Biased Selection) Uses the same training set in DS to tune all the
parameters.

SS 10000 (Small Set) Uses a small set of instances for training: eil51, berlin52, eil76, kroA100.
All the parameters except rbs are optimized.

group* 5000 The training set in this strategy is restricted to one group of instances. For instance,
eil51* corresponds to all the eil51 instances in our TTP subset. All the parameters
except rbs are optimized.

TABLE III: The obtained elite configurations using the irace package

Strategy pls2 plsb pmui pmub N pir pig pip rbs
DS 0.1479 0.295 0.5974 0.0708 400 0.8677 0.8593 0.6194 0
DS-BS 0.2045 0.114 0.055 0.7372 340 0.4126 0.5496 0.7318 0.4802
SS 0.1905 0.1667 0.6861 0.5172 400 0.9614 0.5326 0.1839 0
eil51* 0.1047 0.1638 0.6239 0.6966 360 0.488 0.9445 0.333 0
berlin52* 0.1002 0.0479 0.5116 0.4415 380 0.2709 0.8281 0.3713 0
eil76* 0.5654 0.3455 0.3424 0.2019 240 0.3267 0.5483 0.2035 0
kroA100* 0.7363 0.4303 0.9971 0.2343 220 0.3426 0.6117 0.7429 0
u159* 0.2034 0.4191 0.2434 0.391 380 0.5004 0.6395 0.9196 0
a280* 0.1528 0.2695 0.4873 0.6663 260 0.6793 0.0253 0.3386 0

We compared the TTP scores obtained using EMOA-TTP
with two state-of-the-art single-objective algorithms, namely
MA2B and S5. The results are reported in Tables IV, V,
VI, VII, VIII, IX for all the tuning strategies we tested.
Note that we only report the best found configuration (elite
configuration) according to the irace package. The last two
columns correspond to the number of times an algorithm
achieved the best score and second best score. The results
show that EMOA-TTP was implicitly able to obtain good TTP
scores. By implicitlty we mean that the TTP score was not
part of the bi-objective optimization process. EMOA-TTP was
able to surpass S5 on the majority of the instances, and was
competitve to MA2B.

Our MO-TTP model seems to be an elegant alternative to
the single objective one. However, efficient multi-objective
optimization is still to this day a challanging task. While
our algorithm was able to perform decently on small TTP
instances, its performance decreases for larger ones.

The results show that the best TTP scores obtained by
EMOA-TTP correpond to the strategy of training each group
of instances separately (group*). In fact, group* was able to
obtain the best TTP score 31 times. However, training with
small instances (SS) was also a good strategy even on larger
instances. SS was ranked first 28 times and, unline group*, the
training phase is done only once.

DS-BS performed well on the berlin52* group, but its
overall performance is quite mediocre. Another drawback of
this strategy is that it does not return a set of solutions. In
fact, due to the biased selection, in all the cases we verified
the algorithm only returns one solution. DS was ranked best
only 8 times, which means that using a diverse set of solutions
is not a very good strategy.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this technical report, we studied the Travelling Thief
Problem (TTP), a novel multi-component problem, as a bi-
objective problem. First, we proposed a two objectives prob-
lem as an alternative model to the current single objective
model. Then, we proposed an evolutionary algorithm based
on NSGA-II named EMOA-TTP. Lastly, we carried out an
empirical study of our algorithm.

We consider the obtained results important for two main
reasons:

• Our EMOA was able to obtain a range of solutions
which allows more freedom and flexibilty, which is very
beneficial from a decision making perspective.

• EMOA-TTP was competitive to state-of-the-art single-
objective algorithms, even if the TTP score was not
taked into consideration as an objective. This means that
the proposed bi-objective model is representative of the
standard single-objective TTP.

As a result, we believe that multi-objective optimization
provides a better model when dealing with multi-component
problem. However, such generalization is not so obvious and
certainly needs more investigation.

In the future, further efforts will be made to improve the
scalability of EMOA-TTP.
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TABLE IV: Results for the eil51 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS eil51*

eil51 n50 bounded-strongly-corr 01 4069 3840 3840 3840 4269 4269
eil51 n250 bounded-strongly-corr 01 10836 10912 10912 10912 11322 11004
eil51 n500 bounded-strongly-corr 01 26624 25426 25426 25426 25506 25542
eil51 n50 bounded-strongly-corr 05 4180 3925 3925 3925 5007 5138
eil51 n250 bounded-strongly-corr 05 32086 30585 30585 30585 30585 30585
eil51 n500 bounded-strongly-corr 05 77605 76634 76634 76634 76634 76541
eil51 n50 bounded-strongly-corr 10 10095 9613 9613 9613 10755 10949
eil51 n250 bounded-strongly-corr 10 34237 33853 33853 33853 36315 35824
eil51 n500 bounded-strongly-corr 10 79322 76148 76148 76148 75625 75720
eil51 n50 uncorr-similar-weights 01 1447 1238 1238 1238 1460 1460
eil51 n250 uncorr-similar-weights 01 5451 4999 4999 4999 5451 5451
eil51 n500 uncorr-similar-weights 01 13116 12246 12246 12246 13105 13097
eil51 n50 uncorr-similar-weights 05 2113 1373 1373 1373 2018 2133
eil51 n250 uncorr-similar-weights 05 14428 12902 12902 12902 12902 12902
eil51 n500 uncorr-similar-weights 05 29679 27780 27780 27780 27780 27781
eil51 n50 uncorr-similar-weights 10 5599 5420 5420 5420 5461 5461
eil51 n250 uncorr-similar-weights 10 27806 26950 26950 26950 26950 26950
eil51 n500 uncorr-similar-weights 10 55408 52889 52889 52889 52891 52719
eil51 n50 uncorr 01 2788 2193 2193 2193 2871 2853
eil51 n250 uncorr 01 11568 9816 10394 10394 11387 11577
eil51 n500 uncorr 01 22811 19485 19640 19640 19981 22463
eil51 n50 uncorr 05 4408 2926 2926 2926 4132 4127
eil51 n250 uncorr 05 18813 16387 16386 16386 16508 16547
eil51 n500 uncorr 05 46899 45001 45001 45001 44839 45001
eil51 n50 uncorr 10 6682 6130 6130 6130 6785 6838
eil51 n250 uncorr 10 30235 29543 29543 29543 29543 29429
eil51 n500 uncorr 10 64748 62697 62697 62697 63667 63679
Best 16 0 0 0 6 8
Second best 1 7 7 7 14 12
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Birattari, M. (2011). The irace package, iterated race
for automatic algorithm configuration. Technical report,
Citeseer.

[13] Mei, Y., Li, X., and Yao, X. (2014). On investigation
of interdependence between sub-problems of the travelling
thief problem. Soft Computing, pages 1–16.

[14] Polyakovskiy, S., Bonyadi, M. R., Wagner, M.,
Michalewicz, Z., and Neumann, F. (2014). A comprehen-
sive benchmark set and heuristics for the traveling thief
problem. In Proceedings of the 2014 conference on Genetic
and evolutionary computation, pages 477–484. ACM.

[15] Reinelt, G. (1991). Tspliba traveling salesman problem
library. ORSA journal on computing, 3(4):376–384.

[16] Wagner, M. (2016). Stealing Items More Efficiently with



TABLE V: Results for the berlin52 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS berlin52*

berlin52 n51 bounded-strongly-corr 01 4203 4017 4017 4283 4455 4455
berlin52 n255 bounded-strongly-corr 01 15799 15642 15642 15758 15813 15757
berlin52 n510 bounded-strongly-corr 01 30661 30214 30214 30268 30388 30245
berlin52 n51 bounded-strongly-corr 05 14010 11295 13016 13918 14213 14198
berlin52 n255 bounded-strongly-corr 05 67705 53684 55889 68722 66376 69626
berlin52 n510 bounded-strongly-corr 05 129619 102905 108227 124614 125439 127158
berlin52 n51 bounded-strongly-corr 10 16642 8229 15289 16672 16393 16601
berlin52 n255 bounded-strongly-corr 10 84975 55949 80639 90925 85388 87680
berlin52 n510 bounded-strongly-corr 10 167009 117286 161286 172362 167049 170345
berlin52 n51 uncorr-similar-weights 01 1585 1097 1607 1656 1656 1656
berlin52 n255 uncorr-similar-weights 01 10718 8872 9151 9315 10683 10911
berlin52 n510 uncorr-similar-weights 01 25549 20630 23569 22032 25632 25686
berlin52 n51 uncorr-similar-weights 05 6703 4037 5522 6672 6670 6670
berlin52 n255 uncorr-similar-weights 05 28024 20484 24517 29357 27609 28206
berlin52 n510 uncorr-similar-weights 05 58706 42815 49922 60115 52649 55018
berlin52 n51 uncorr-similar-weights 10 8982 7237 8222 9088 8824 8987
berlin52 n255 uncorr-similar-weights 10 46717 40512 44057 46205 45505 45589
berlin52 n510 uncorr-similar-weights 10 91397 79010 87983 93916 87171 87092
berlin52 n51 uncorr 01 3053 2331 2890 2898 3107 3102
berlin52 n255 uncorr 01 19625 17731 19174 19439 19996 20013
berlin52 n510 uncorr 01 39060 38416 38902 38939 38953 39109
berlin52 n51 uncorr 05 6391 4714 5236 6179 6430 6450
berlin52 n255 uncorr 05 36254 31229 33361 36868 34739 35440
berlin52 n510 uncorr 05 74325 62867 65746 75046 67937 69710
berlin52 n51 uncorr 10 9544 7961 8881 9450 9463 9642
berlin52 n255 uncorr 10 42238 39385 40350 43312 40786 41293
berlin52 n510 uncorr 10 93157 86049 88945 94658 89711 89040
Best 4 0 0 12 5 9
Second best 11 0 0 3 4 7

Ants: A Swarm Intelligence Approach to the Travelling
Thief Problem. In Proceedings of the 10th International
Conference on Swarm Intelligence, ANTS 2016, pages 273–
281, Brussels, Belgium. Springer International Publishing.



TABLE VI: Results for the eil76 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS eil76*

eil76 n75 bounded-strongly-corr 01 3907 3742 3742 3742 3808 3984
eil76 n375 bounded-strongly-corr 01 17704 18119 18119 18119 18178 18155
eil76 n750 bounded-strongly-corr 01 33377 33458 33458 33458 33469 33207
eil76 n75 bounded-strongly-corr 05 5874 5516 5516 5516 5563 5563
eil76 n375 bounded-strongly-corr 05 61851 61099.9 59410 59410 61111 61247
eil76 n750 bounded-strongly-corr 05 104557 102104 102104 102104 102104 101763
eil76 n75 bounded-strongly-corr 10 11562 10325.6 11069 10095 11069 10805
eil76 n375 bounded-strongly-corr 10 64867 64016.3 64836 62003 64869 66472
eil76 n750 bounded-strongly-corr 10 109354 103018 103018 103018 102187 101413
eil76 n75 uncorr-similar-weights 01 1419 1137 1387 1124 1480 1425
eil76 n375 uncorr-similar-weights 01 11313 10627.5 11247 10615 11758 11718
eil76 n750 uncorr-similar-weights 01 21802 20495 20495 20495 21255 21151
eil76 n75 uncorr-similar-weights 05 4180 3592 3592 3592 3971 3932
eil76 n375 uncorr-similar-weights 05 21928 20099.9 20097 20097 19771 20360
eil76 n750 uncorr-similar-weights 05 41688 38601.5 38573 38573 38635 38807
eil76 n75 uncorr-similar-weights 10 8285 7811 7945 7811 7945 7945
eil76 n375 uncorr-similar-weights 10 37939 36578 36578 36578 37244 37526
eil76 n750 uncorr-similar-weights 10 79517 77494 77494 77494 77932 77740
eil76 n75 uncorr 01 5272 4705.8 5070 4618 5402 5420
eil76 n375 uncorr 01 14188 13573 13832 13832 14002 13944
eil76 n750 uncorr 01 36180 35947 36330 36330 36330 36340
eil76 n75 uncorr 05 6694 5789 5789 5789 5951 5789
eil76 n375 uncorr 05 27891 27094 27094 27094 27094 27094
eil76 n750 uncorr 05 52541 50557.2 50417 50417 50417 50417
eil76 n75 uncorr 10 9460 8830 9459 8830 9459 9459
eil76 n375 uncorr 10 46266 44892.1 44860 44860 44860 44860
eil76 n750 uncorr 10 87997 85664 85664 85664 85369 84881
Best 19 0 0 0 4 4
Second best 1 7 9 6 14 11

TABLE VII: Results for the kroA100 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS kroA100*

kroA100 n99 bounded-strongly-corr 01 4487 4278 4278 4278 4455 4459
kroA100 n495 bounded-strongly-corr 01 24793 24794 24794 24794 24829 24794
kroA100 n990 bounded-strongly-corr 01 48823 48759 48759 48759 48759 48759
kroA100 n99 bounded-strongly-corr 05 19932 17615 17615 17615 19472 19344
kroA100 n495 bounded-strongly-corr 05 93705 92581 92581 92581 93642 93111
kroA100 n990 bounded-strongly-corr 05 186924 183523 183523 183523 186379 186865
kroA100 n99 bounded-strongly-corr 10 21541 20052 20052 20052 22067 22085
kroA100 n495 bounded-strongly-corr 10 99763 99763 99763 99763 99763 99402
kroA100 n990 bounded-strongly-corr 10 206770 206758 206758 206758 206273 205650
kroA100 n99 uncorr-similar-weights 01 1920 1791 1791 1791 2119 2327
kroA100 n495 uncorr-similar-weights 01 13358 12054 12054 12054 12746 12392
kroA100 n990 uncorr-similar-weights 01 34096 31914 31914 31914 33183 32734
kroA100 n99 uncorr-similar-weights 05 9201 7905 7905 7905 8861 8624
kroA100 n495 uncorr-similar-weights 05 41585 39440 39440 39440 39060 39440
kroA100 n990 uncorr-similar-weights 05 81712 80386 80386 80386 80394 79316
kroA100 n99 uncorr-similar-weights 10 15054 13880 13880 13880 14421 14388
kroA100 n495 uncorr-similar-weights 10 69328 69223 69223 69223 69275 68297
kroA100 n990 uncorr-similar-weights 10 141066 140954 140954 140954 140954 139393
kroA100 n99 uncorr 01 3952 3876 3876 3876 3942 3942
kroA100 n495 uncorr 01 20015 20011 20011 20011 20015 20015
kroA100 n990 uncorr 01 41022 40578 40681 40681 40699 40699
kroA100 n99 uncorr 05 10082 9932 9932 9932 10012 10012
kroA100 n495 uncorr 05 56255 55625 55625 55625 55649 55649
kroA100 n990 uncorr 05 103610 103570 103570 103570 103570 103570
kroA100 n99 uncorr 10 15539 14943 14943 14943 14956 14956
kroA100 n495 uncorr 10 78991 78888 78888 78888 78326 78981
kroA100 n990 uncorr 10 155629 155540 155540 155540 155585 155061
Best 24 1 1 1 3 3
Second best 0 6 6 6 19 12
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Fig. 1: An illustration of the obtained Pareto front for a subset of TTP instances. The colors represent the TTP score, which
is not part of EMOA-TTP.



TABLE VIII: Results for the u159 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS u159*

u159 n158 bounded-strongly-corr 01 8622 8634 8637 8672 8637 8672
u159 n790 bounded-strongly-corr 01 45694 45205 45462 45502 45493 45496
u159 n1580 bounded-strongly-corr 01 83962 83636 83828 83870 83817 83827
u159 n158 bounded-strongly-corr 05 30712 29932 30084 30184 30084 30015
u159 n790 bounded-strongly-corr 05 133387 133307 133385 133385 133195 133385
u159 n1580 bounded-strongly-corr 05 261372 261261 261375 261375 261375 260876
u159 n158 bounded-strongly-corr 10 38110 37396 40441 39772 39502 39290
u159 n790 bounded-strongly-corr 10 181102 178796 178887 178887 178887 178740
u159 n1580 bounded-strongly-corr 10 339560 339412 339023 339544 339451 338525
u159 n158 uncorr-similar-weights 01 5564 5422 5598 5422 5633 5691
u159 n790 uncorr-similar-weights 01 25510 24179 24248 24659 24514 24504
u159 n1580 uncorr-similar-weights 01 49784 48670 48689 48990 48934 48885
u159 n158 uncorr-similar-weights 05 12205 12205 13082 12940 12916 12836
u159 n790 uncorr-similar-weights 05 58658 57618 57648 57648 57316 57131
u159 n1580 uncorr-similar-weights 05 116351 114465 114536 114536 114536 114536
u159 n158 uncorr-similar-weights 10 23373 22775 23431 23432 23431 23175
u159 n790 uncorr-similar-weights 10 112833 110062 111556 111569 111286 111152
u159 n1580 uncorr-similar-weights 10 222792 217506 220389 222306 218018 220069
u159 n158 uncorr 01 6212 5340 5535 5535 5535 5535
u159 n790 uncorr 01 39359 38850 39101 39101 39101 39239
u159 n1580 uncorr 01 79599 76610 76627 76644 76627 76627
u159 n158 uncorr 05 20521 19517 19804 19889 19842 19824
u159 n790 uncorr 05 87617 87607 87607 87607 87607 87181
u159 n1580 uncorr 05 184081 184689 184689 184689 184689 184379
u159 n158 uncorr 10 25177 24890 25363 25363 25363 25354
u159 n790 uncorr 10 121013 119065 119321 119670 119508 119321
u159 n1580 uncorr 10 244760 242248 242248 242248 242248 241928
Best 19 1 5 5 3 2
Second best 0 2 8 20 7 4

TABLE IX: Results for the a280 instances

TTP instances MA2B S5 EMOA-TTP
DS DS-BS SS a280*

a280 n279 bounded-strongly-corr 01 17912 18400 18382 18377 18370 18433
a280 n1395 bounded-strongly-corr 01 80882 83278 83232 83211 83272 83164
a280 n2790 bounded-strongly-corr 01 152190 156398 156380 156311 156395 156450
a280 n279 bounded-strongly-corr 05 55373 55750 55763 55695 55696 55740
a280 n1395 bounded-strongly-corr 05 252903 250268 250295 249925 250561 251114
a280 n2790 bounded-strongly-corr 05 474104 478086 477902 477888 478051 478005
a280 n279 bounded-strongly-corr 10 56226 57073 56772 57204 56451 57020
a280 n1395 bounded-strongly-corr 10 292496 303308 303255 303166 303439 303379
a280 n2790 bounded-strongly-corr 10 575062 587116 586945 585548 586623 586961
a280 n279 uncorr-similar-weights 01 8963 9042 9014 9027 9055 9045
a280 n1395 uncorr-similar-weights 01 38724 38727 38699 38677 38779 38677
a280 n2790 uncorr-similar-weights 01 78706 79104 79050 78872 79309 79137
a280 n279 uncorr-similar-weights 05 21521 21395 21403 21330 21403 21414
a280 n1395 uncorr-similar-weights 05 108950 109866 109304 109338 109923 109702
a280 n2790 uncorr-similar-weights 05 213732 215570 215395 215429 215460 215686
a280 n279 uncorr-similar-weights 10 40268 40749 40761 40718 40717 40772
a280 n1395 uncorr-similar-weights 10 194927 195264 195155 194936 195122 195182
a280 n2790 uncorr-similar-weights 10 386964 387594 386500 387121 387199 387146
a280 n279 uncorr 01 19246 18763 18761 18766 19006 18763
a280 n1395 uncorr 01 68019 67153 67156 67137 67068 67162
a280 n2790 uncorr 01 140597 140532 140519 140507 140410 140543
a280 n279 uncorr 05 33357 32883 32886 32844 32843 32845
a280 n1395 uncorr 05 150763 151727 151767 151750 151785 151606
a280 n2790 uncorr 05 297309 298654 298203 297358 297905 298709
a280 n279 uncorr 10 42603 42106 42040 42039 42305 42227
a280 n1395 uncorr 10 208961 209702 209613 209616 209784 209731
a280 n2790 uncorr 10 425995 428899 429002 428803 428803 428874
Best 7 5 2 1 7 5
Second best 0 9 3 9 5 10


