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Abstract—Variations are pervasive in the real-world optimiza-
tion problems. Among them, robustness against environmental
variation has been extensively studied. It concerns about the
changes in the environmental parameters, and is the focus of
this paper. As the environmental parameters change, there are
actually multiple static environments linked up. When optimizing
for multiple environments, one usually needs to sacrifice perfor-
mance in one environment in order to gain better performance in
another. However, there may not be a single solution that meets
the performance requirements for all environments. In this paper,
we propose to find multiple solutions that each serve a certain
group of environments. This formulation is named as Robust
Optimization with Multiple Solutions (ROMS) in this paper.
Based on two basic observations of ROMS, two evolutionary
algorithms based approaches to ROMS are proposed, namely
direct evolution and two-phase evolution. A benchmark problem
generator is also suggested to produce uniform-random ROMS
problems. The two approaches are then empirically studied on
a variety of synthetic problems.

Index Terms—Robust optimization, Multiple solutions, Evolu-
tionary algorithms and Environmental variation.

I. INTRODUCTION

Variations are pervasive in the real world. Neglecting them
in optimization may result in optimal solutions that are prac-
tically unstable and ultimately useless. A case study reported
by [1] found that in 13 out of 90 linear programs drawn
from Netlib, a small 0.01% relative perturbation applied to the
program coefficients can result in serious constraint violation
by more than 50% at the optimal solution. Using such optimal
solutions in practice can sometimes be quite risky. A robust
solution, on the other hand, is one that performs reasonably
well even when subject to variations. It is thus often necessary
to explicitly incorporate variations into the optimization model
and look for robust solutions. Such practice is called robust
optimization by [2].

Many variations may be taken into account when refer-
ring to robust optimization [2]-[4]. Among them, robustness
against environmental variation has been extensively studied
[5]-[9]. It concerns about the changes in the environmental
parameters, and is the focus of this paper. When the envi-
ronmental parameters change, the landscape of the problem
changes. Therefore, if the environmental parameters of a
problem change several times, there are actually multiple
corresponding landscapes, or say environments, to be solved.
The quality of a solution normally changes, subject to the
environmental variation. A robust solution, in this scenario,
is thus defined as a solution that exhibits reasonable systemic
performances over all environments.

To measure the overall quality of a solution, two formu-
lations that output scalar values have been widely used. The

first formulation, called the average-case analysis, is defined
as the average of the objective values of a solution over the
environments; while the second one is defined as the worst
objective value, which is therefore called the worst-case anal-
ysis. In the literature, various approaches have been proposed
for these two formulations, e.g., Monte Carlo methods [6],
[71, [10], [11] for average-case analysis and competitive co-
evolutionary methods [9] for worst-case analysis. It is also
suggested to formulate the robust optimization problem as a
Multi-Objective Optimization (MOP) problem by considering
more than one overall objective function simultaneously [12].
In such cases, variance of the objective values over the
environments is used as an additional (overall) objective by Jin
and Sendhoff [13]. One may also encounter the situation that
the constraints will vary corresponding to the environmental
variations. When dealing with hard constraints, it is reasonable
to require them being satisfied in all environments. When
the environment is modelled as a random variable following
some distribution, a more general choice is to formulate the
constraints as probabilistic inequalities called chance con-
straints [14]. The practice of formulating and solving chance-
constrained problems is called reliability-based optimization
in the literature [8], [15], [16].

The above-mentioned robust formulations all aim to find a
single solution. Although MOP-based formulation can output
a set of non-dominated solutions, one still needs to select the
preferred one manually. In practice, however, there may not
exist a single solution that meets the requirements over all
environments. This may be due to either constraint violation
or poor objective values. The former case happens when
the feasible regions in different environments are disjoint,
and a single solution feasible in all environments cannot be
found. The reason for the latter case lies in what is named
as the price of robustness by Bertsimas and Sim [17]. More
often than not, a solution must sacrifice certain performance
(in terms of the objective function) in one environment in
order to gain some performance boost in another. With this
compromise, there may not exist a tradeoff solution that meets
the performance requirements in all environments. A possible
way out of this dilemma is to resort to multiple solutions.
Concerning constraints, we may find a solution to serve each
group of environments that share a common feasible region.
Concerning the performance, each solution could serve a group
of similar environments. With a larger number of solutions,
the variety of environments that a solution needs to serve
is reduced and thus the cost of robustness lowered. Conse-
quently, less compromised performance in the environments
can usually be achieved. The number of solutions marks the



tradeoff preference between robustness and performance, and
is assumed to be specified by the user. Ultimately, we are
faced with the problem of finding a set of solutions of a given
size for the environments. We call this generalized formulation
robust optimization with multiple solutions (ROMS)'.

To solve ROMS, Evolutionary Algorithms (EAs) are pre-
ferred since their population-based nature well fits the tasks
of finding multiple solutions in a single run. Many examples
can be seen in Evolutionary Multi-objective Optimization
[18], Evolutionary Multi-modal Optimization [19] and so
on. Specifically, two EAs-based approaches to ROMS are
proposed in this paper. The first approach, called direct evolu-
tion, reduces the problem from a mixed-integer optimization
problem to a simpler real-value optimization problem which
is then solved by a direct application of EAs. The second ap-
proach consists of two-phase, which forms a circle by looping
two optimization procedures iteratively. To compare the two
algorithms, a benchmark problem generator is suggested to
generate uniform-random ROMS problems based on a given
basis function. Using this generator, the algorithms are then
empirically studied on a variety of synthetic problems.

The main contributions of this paper include:

1. Formally defining the ROMS problem, and suggesting a
benchmark function generator.

2. Demonstrating how ROMS could be addressed with an
existing EA directly. Besides, a novel approach that is more
specialized for ROMS is also proposed.

The rest of this paper is organized as follows. In the next
section, formal definition of ROMS is given. A discussion of
its properties follows in Section 3. Based on the properties,
two evolutionary approaches are proposed in Section 4 and
5, respectively. A benchmark problem generator is suggested
in Section 6, followed by the empirical studies. Finally, some
conclusions are drawn in the last section.

II. FORMAL DEFINITION
Without loss of generality, we consider the unconstrained
scenarios in this paper. An unconstrained single-objective
optimization problem can be described as follow,

optimize
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where f is the objective function, and x denotes the search
space. When environmental changes are taken into account,
the objective function is extended by introducing the environ-
mental parameter «, as follow,

f(m,a),fL'GX,OzGC ()

where C' denotes possible settings of the environment [3].
When considering fluctuations around one nominal environ-
ment, C' is a connected continuous region. Here, we consider
m nominal environments, and C should be a discrete set
C = ay,..., . For convenience, we denote (-, ;) by f;,
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Fig. 1: This bipartite graph illustrates an example of ROMS when m = 5,
n =3.

and call it an environment. The m environments constitute a
function set F'S = fi,, fy,. Given an z, its overall objective
value is evaluated by some function f based its individual
objective values in each environment. The robust formulation
for finding a single solution x then can be formulated as:

~

Optimize f(fl(x)v "'>fm($))’x €X (3)

Two widely used choices for f are the average function:
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and the one that returns the worst objective value:
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The specific meaning of “worst” depends on whether the
problem is a maximization or minimization problem, in which
cases, the functions min and max are used, respectively. As
can be seen, in this traditional robust formulation, the single
solution x needs to balance the objective values among all
m environments, and a severe performance compromise is
expected.

ROMS can be formulated by extending the robust formula-
tion to the case of multiple solutions. Suppose the desired
number of solutions is n. That is, a set of n solutions
S = $1,...,8, is used to cope with all the environments
in F'S, with each single solution serves a subset of F'S.
The concept is best illustrated using a bipartite graph. Fig.
1 shows an example when m = 5, n = 3. A proper bipartite
graph for ROMS should satisfy the property that each vertex
representing an environment has exactly one associated edge.
Intuitively, this guarantees that each environment is served
by exactly one solution. From Fig. 1, it can be seen that
not only the solution set .S but also the service relationships
between the solutions and environments must be determined.
The relationships can be specified by a mapping M from F'S
to S such that (f;) = s; if and only if environment f; is served

optimize



by solution s;. A complete solution to ROMS is thus a pair
(S, M), and the problem can be described as:

~ ~

optimize f(S’ M) = f(fl(M(fl))’ afm(M(fm))) (6)

where fis the overall objective function as in the traditional
robust formulation.

In this work, both f,,4 and f,s: for the overall objective
function are considered. However, for convenience, the follow-
ing discussions will only refer to fu,4. At the end of Section
5, it is shown that the proposed approaches also apply to fust
without any difficulty.

ITI. BASIC OBSERVATIONS

It is easy to see that there are two components .S, M to be
optimized, which are of different types. The first observation
we made is that given a solution set .5, its best accompanying
M can be computed exactly in polynomial time.

Observation 1: Given a solution set S, the optimal accom-
panying M is one that (assuming a minimization problem):

Vit [Vsj fi(sj) = fi(M(f))] (7

In other words, the optimal M is one that maps each
objective function to the solution in .S that performs best on
it. The algorithm to compute such an M is trivial and costs
O(mn) objective function evaluations.

To see the second observation, a partition P of F'S is first
introduced. By definition, all conditions served by a common
solution are required to be in a single part. A P is therefore
can be derived from an M by grouping together all conditions
that are mapped to the same solution. Conversely, each P can
also be viewed as defining an M with the specific solutions
unspecified (represented by placeholders).

Observation 2: Given a partition P = p1,,pi(kn) of FS,
in which the objective functions are required to be mapped to
a single solution, the optimal solution set S is one that

Vp; : [3s; : s; optimizes p;] (®)
where
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which amounts to an ordinary optimization problem. This
enlightens us to compute an optimal S from a given P. The
procedure is to solve for each part p separately via ordinary
optimization and put together the obtained solutions to get S.
since P can be viewed as defining an M (strictly speaking, an
M pattern), this second observation can be seen as a reversal
to the first one, i.e., to compute an optimal accompanying S
from a given M. In the following, according to the context, M
may be used to mean its defining P. In the next two sections,
two EAs-based approaches to solve ROMS are inspired by the
basic observations.

Algorithm 1: ROMS-DE

1 initialize population pop

2 evaluate pop

3 for each new generation

4 for i «— 1 to population size ps = |pop|

5 randomly select @, b, ¢ € [1..ps] that are mutually different and also different from i
6 diff — popla] + F * (pop[b] — pop[c])

7 randomly select 7 € [1..n]

8 forj—1lton

9 generate a random number rnd € [0, 1]

10 if rnd < CR or j = r then trial[i][j] < diff[j]

11 else mrialli][j] — popli][j] [irial[#][/] is the j-th solution of trial[]
12 evaluate population trial

13 fori — 1tops

14 popli] < the better of popl[i] and trial[i]

Fig. 2: The pseudo code of Direct Evolution.

IV. DIRECT EVOLUTION APPROACH

A straightforward approach is to fit the problem into the
general framework of an EA and solve it directly by evolution.
Originally, the individual encoding has to account for both
S and M, leaving us a difficult mixed-integer optimization
problem to deal with. However, thanks to Observation 1, the
problem can be made easier. Concretely, since the optimal M
can be computed exactly from a given S in polynomial time, it
is not necessary to let the evolution process figure out the right
matching between S and M. The idea is for the individuals
to encode S only. When evaluating an S, its optimal M is
firstly computed on the fly and then the resultant pair S, M,
is evaluated. In this way, the problem is reduced to a real-
value optimization problem rather than a mixed-integer one.
Compared with other real-value optimization problems, ours
has a somewhat unconventional objective function whose eval-
uation involves computing the corresponding M. A specific
instantiation of this idea comes next.

Suppose the search space for each single solution in .S
is RP. A solution set S containing n solutions is directly
encoded as a real vector of size D x n, where each consecutive
D values encode a single solution. Any real-valued EA can be
employed to address this problem, and differential evolution
(specifically, the standard D E/rand/1/bin) proposed by [20]
is adopted in this work to demonstrate the proposed approach
and to conduct empirical studies. This particular instantiation
is denoted as ROMS-DE (short for Direct Evolution) in this
paper. The pseudo-code of ROMS-DE is shown in Fig. 2 (¥
and C'R are parameters of differential evolution).

In theoretical study of evolutionary algorithms, computa-
tional cost is measured in terms of fitness evaluation counts,
assuming each takes unit cost. Given a certain fitness eval-
uation budget, we usually need to estimate the maximum
number of generations to evolve. We now derive the fitness
evaluation cost for ROMS-DE to evolve GG generations, which
is denoted by costpgp(G). Along this way, it is also shown
how fitness evaluations can be saved via a carefully-made
implementation and that the algorithm is less expensive than
it seems from the pseudocode. First, it is important to note
that a unit-cost elementary fitness evaluation here refers to



the evaluation of a single solution in a single condition, rather
than that of a whole solution set .S on all considered conditions
F'S. With a straightforward implementation, it is easy to get
costpp(G) = (n x m) X ps x G. To evaluate an S, the
fitness of each single solution in each condition needs to be
known. That is where the term (n x m) comes from. To
evaluate a whole generation thus costs (n x m) x ps fitness
evaluations. What follows is a total of (n x m) X ps x G
fitness evaluations for evolving GG generations. However, with
a better implementation, the cost can be lowered. The point is
that in a newly generated S (trial[i] in the pseudo-code), some
single solutions are directly copied from its parent pop|i] with
their fitness in each condition already computed. There is no
need to re-evaluate them. As a result, to evaluate the newly
generated S, only the solutions coming from the difference
vector diff needs to be evaluated in each condition. This
improvement does not affect the initial generation which still
costs us (n X m) X ps fitness evaluations. For each generation
that follows, we first need to estimate the number of solutions
coming from di f f in each newly generated S. The compound
condition test at Line 10 in Fig. 2 says that the » —th solution
always comes from dif f while the rest come from dif f with
a probability of C'R. Overall, for each newly generated S, the
expected number of solutions coming from di f f, which need
to be evaluated in each condition is [1 + (n — 1) x C'R]. With
this improved implementation, the expected cost for evolving
G generations is now reduced to

Algorithm 2: ROMS-TP

1 initialize solution pool PL

2 archive < null
3 Mg «— null

4 for each new iteration

5 pops « evolve on PL [pops is a population of solution sets
6 archive « better(archive, best individual in pops)
7 pops’ — {S € pops|S has a different corresponding M from M, }
8 if pops’ # @ then S « best individual in pops”
9 else S « best individual in pops
10 M,4; « the optimal M corresponding to S
11 P « the partition defined by M,
12 pops — @
13 S0
14 for eachp € P
15 pop «— evolve on p pop is a population of single solutions|
16 pops «— pops U {pop}
17 § « S U {best individual in pop}
18 archive « better(archive, S)
19 PL « build on pops

Fig. 3: The pseudo code of Two-Phase Evolution.

In accordance with direct evolution, the two-phase evolution
approach can be seen as maintaining and optimizing a solution
set S along the loop. However, different from direct evolution,
only one S is maintained by two-phase evolution. Intuitively,
in each tour around the loop, the maintained S jumps from
one point to another in the search space of S. The S = M
procedure is exact. Assuming no randomness in the M = S
procedure as well, the next point to sample (jump to) is
determined completely by the current one. Consequently, the
whole optimization process is determined once the initial point

costpp(G) = (nxm)xps+[(1+(n—1)xCR)xm|xpsx(G—1).is determined. This can become quite risky when the initial

(10)

V. TWO-PHASE APPROACH

The direct evolution only takes the advantage of the
Observationl. Although it is quite straightforward and easy
to implement, it does not exploit the full benefits of the obser-
vations made above. Furthermore, one may also be interested
in how the Observation2 can be adopted to help design a
new approach. For these two purposes, the second approach,
based on the interaction between the two observations, is
proposed. The first observation essentially tells a way to derive
an optimal M from a given S, denoted as S = M. Likewise,
the second observation essentially tells a way to derive an
optimal S from a given P or an M pattern. Similarly, it is
denoted as M = S. By connecting them, a loop that goes
from S to M and back can be formed. Since the output of both
procedures are optimal, by iterating this loop, one is actually
undergoing an optimization progress. The second approach is
based exactly on this idea. We call it two-phase evolution, for
the optimization loop consists of two phases, namely S = M
and M = S.

A straightforward implementation of this approach goes as
follows. Staring from a randomly generated .S, repeat the two
procedures S = M and M = S until some termination
criterion is met. Again, as an example, DE/rand/1/bin is
employed to perform the optimization involved in M = S.

point is randomly chosen.

In an attempt to reduce the risk, the initial search coverage
is increased by generating more than N solutions. Originally,
a single S is randomly generated, which contains N solutions.
Now, a solution pool PL of a size greater than N is randomly
generated. Combinatorial optimization is then performed on
the generated PL to select N solutions that together make
up an optimal S with respect to the given PL [21]. Denote
this procedure by PL = S. Another modification concerns
the procedure M = S that involves solving K real-value
optimization problems. Since a population-based evolutionary
algorithm like DE/rand/1/bin is used to perform the opti-
mization, a set of solutions is obtained for each problem. By
the original design, only the best solution is selected into S.
With the introduction of P L, solutions other than the best one
may also be used. When the goal is to generate an updated
PL that has a size larger than S, more solutions will be
selected. With these modifications, the original optimization
loop S = M = S becomes PL = S = M = PL with
increased search power to reduce risk.

Another improvement over the original design concerns in-
corporating an explicit mechanism to prevent the optimization
process from stagnation. In order for the optimization process
to continually make progress, a different M shall be reached
each time around the loop. As an example, the Genetic Algo-
rithm (GA) (Deb 2010) is employed to perform the procedure



PL = S. Since GA is population-based, a population of S
is obtained in the end, each have an accompanying optimal
M. By the original design, the best S is selected with its M
derived. Whereas making sense in most cases, this is not the
best choice when the derived M is identical to the one derived
in the previous tour around the loop. When it happens, the
algorithm stagnates, i.e., simply re-producing the individuals
in the previous iteration. To fix this, instead of always selecting
the absolutely best S, we try to choose the best S among
those that produce an M different from the one in the previous
iteration.

With the aforementioned improvements and with the use
of soft-computing optimization algorithms, quality of the
maintained S' is not guaranteed to be non-decreasing along the
optimization loop. As a result, an external record is set up that
maintains the best S ever encountered during the optimization
process. This remedy finally makes the two-phase evolution
approach complete. The two-phase evolution is denoted as
ROMS-TP. The pseudo-code is given in Fig. 3.

The particular implementation used in this work and its
computational complexity costrp(G) (here G refers to the
number of iterations around the loop rather than generations)
are described in the following texts. Some implementation
issues will also be discussed along the way. To make things
simple, the size of PL is fixed to a predefined number. Line
5 in Fig. 3 is done in two steps. In the first step, each single
solution in PL is evaluated in each condition, which costs us
|PL| x m fitness evaluations. In the second step, a combinato-
rial optimization is done on PL using a generational genetic
algorithm. Thanks to the pre-processing in the first step, the
evolution process in the second step costs no fitness evaluation
at all. Details of the genetic algorithm used are listed in Table
1. Lines 6 13 are cost-free. A standard DE/rand/1/bin is
employed to perform the real-value optimization at Line 15.
In total, Lines 14 17 cost |pop| x m x g fitness evaluations
where ¢ is the number of generations to evolve at Line 15 for
the differential evolution. Lines 18-19 are cost-free. Thus, for
this implementation, the required computational complexity
will be:

costrp(G) = (JPL| x m + |pop| x m x g) x G (11)

Care should be taken when implementing Line 19. There
are a total of |[PL| x |pop| single solutions contained in pops,
out of which |PL| are to be selected to make up the new
PL. Recall that the size of PL is fixed. Depending on the
parameter settings, |PL| x |pop| may be smaller than, equal
to, or larger than |PL|. In the first two cases, all solutions in
pops go to PL with the remaining space, if any, being filled
up by randomly generated solutions. In the last case, only part
of pops goes to PL. A proper selection of solutions should
be made. The selection could be drawn from each population
in pops as evenly as possible, so that each population is well
represented with minimum information loss. To do so, one
solution is randomly selected (without replacement) from each

population in turn repeatedly until the desired number |PL| is
reached.

Up to now, the discussion is restricted to the robustness
measure fq,4. In fact, the two proposed approaches also apply
to the robustness measure f,,s;, which represents a kind of
worst-case analysis. First, note that the first observation holds
perfectly without any change in the f,s; case. The second
observation holds when the meaning of the phrase ”’s optimizes
p” in (8) is adapted to

s; optimizes p; <> s; minimizes max f, (12)

f q€Pi
which corresponds to the new measure. Both the proposed ap-
proaches are based on the correctness of the two observations.
When the observations hold, the proposed two approaches can
work.

VI. EMPIRICAL STUDY

A. Experimental Settings

To get an actual feeling and experience with the ROMS
problem and the two approaches proposed, experiments are
done on synthetic functions. In this subsection, we first de-
scribe the problem settings, and then the algorithmic settings.

A ROMS problem should be investigated from three per-
spectives, i.e., the number of conditions m, the desired number
of solutions n, and the general function form of the conditions.
In the conducted experiments, m goes from 4 to 20 with
a step-size 4, and n goes from 2 to 10 with a step-size 2.
The first two columns in Table 2 list the m, n combinations
we use. With respect to the function forms, 5 functions, i.e.,
Fi-F3, Fg, Fip, were chosen from the standard benchmark
functions for the CEC-2005 special session on real-parameter
optimization [22]. These functions cover unimodal and mul-
timodal functions with the latter further divided into basic
functions, expanded functions, hybrid composition functions
and pseudo-real problems. The chosen functions are all with-
out special properties, e.g., static noise, global optimum on
bounds, unbounded search space and too time-consuming. To
introduce the notion of environmental parameters, we addi-
tionally parameterize each function with a translation vector
and an orthogonal matrix (matrices with orthonormal column
vectors). The translation vector shifts the function while the
orthogonal matrix transforms the function with a combination
of rotation (around the global optimum) and reflection (via
some hyper-plane through the global optimum) [23]. The
conditions in F'S are thus generated from the same function
with different translation vectors and orthogonal matrices built
in. The environmental parameters are generated as uniform
random variables in their corresponding spaces. The gener-
ation of uniform random translation vectors is simple. Just
generate each entry uniform-randomly. To generate uniform
random orthogonal matrices, we follow the classical two-step
algorithm proposed by Diaconis and Shahshahani [24]. First,
generate each matrix entry randomly following a standard



normal distribution, and then apply the Gram-Schmidt orthog-
onalization. All problems are minimization problems, and are
tested in both D = 2 and D = 30 dimensions.

The parameter settings for ROMS-TP are listed in Table 3.
For differential evolution, we follow the parameter settings
suggested by Storn and Price [20], i.e., with F' = 0.5,
CR = 0.1 and a population size of 5 times the problem
dimension. Notice that while for the differential evolution
used in ROMS-TP, the problem dimension is D, for ROMS-
DE it should be n x D, which equals the length of the
encoding vector of a solution set. For all experiments, a fitness
evaluation budget of 1e7 is imposed. The number of iterations
to run is computed accordingly to cost pg(G) and costrp(Q)
respectively, as shown in Table 2.

B. Experimental Results

In this subsection, the experimental results are presented.
All experiments are repeated for 25 times with the average
results reported. A 95% confidence interval is also reported
for each result, assuming a normal distribution. The mean
objective value over the different environments is used as
the robustness measure. For convenience, we label each sub-
experiment in the form F,-m-n-D-f,, so that F}-4-2-2-f;,,
refers to the experiment with function Fyj, m =4,n=2,D =
2 and the robustness measure f,,4. We first present and discuss
the results obtained with f,,, and then f,, and for each
measure, D = 2 comes before D = 30. The performance of
each algorithm from three perspectives is analyzed from three
perspectives. The first one is optimization dynamics which is
demonstrated in the 2-dimensional optimization curve (also
known as convergence curve in evolutionary computation)
with fitness evaluation counts as x-axis and the robustness
measure as y-axis . The second and third are scalability with
respect to m and n respectively.

Optimization dynamics for f,,,, D = 2: When n is fixed
at 2, the big picture looks similar for different m values. For
brevity, only the results for m = 12 are shown. The results on
different functions can be clustered into two groups. For the
first group (Fy F3, Fg), we take the results on Fj for example
(Fig. 4). Pay attention that for each algorithm, there are three
lines. The middle line shows the average result, while the
upper and lower ones give the bounds for the 95% confidence
interval. To obtain the results, for ROMS-DE, the best-of-
generation objective value, at the end of each generation, is
drawn. Since differential evolution implements elitism, the
best-of-generation value is also the best value seen so far.
For ROMS-TP, the external archive at the end of each step
is drawn, resulting in two samples for each iteration. ROMS-
TP’s curve starts from the end of the first step, which is the
start of the second step, of the first iteration. Thus, the first
drop shown by the curve, if any, is due to the second step, not
the first.

The curve of ROMS-DE in Fig. 4 looks typical to a
traditional evolutionary algorithm. This is due to ROMS-DE
is essentially an application of standard differential evolution.
The curve of ROMS-TP is more interesting. An r decrease

happens at the first iteration. After that, the curve descends
slowly. Besides, a careful observation will reveal that decrease
happens mostly in the second step of each iteration. This is
seen in the alternating “drop, level-off, drop” pattern along
sample points on the curve. Comparing the two curves, pre-
mature convergence in ROMS-DE can be seen in Fig. 4. A
general way to counteract premature convergence is to use a
larger population, but it also slows done the convergence. Fig.
5 shows the corresponding result on Fjo (the second group).
Being contrary to the previous result, starting from the first
sample point, an alternating “’level-off, drop, level-off” rather
than “drop, level-off, drop” pattern is seen along the curve
of ROMS-TP. In other words, decrease is mainly due to the
first step in each iteration. The high multimodality, which is
F1y’s most distinct feature, may be the reason behind this
phenomenon. It makes the real-value optimization involved in
the second step more difficult, while having no direct impact
on the first step. When the optimization effect is shifted from
the second step to the first, the decrease is also more gradual.
Without a dramatic decrease in the second step at the first
iteration, ROMS-TP’s performance is greatly weakened with
a curve running always above that of ROMS-DE.

Next, the results with varying n while m = 20 are
discussed. Again, the results can be clustered into two groups.
On functions in the second group (Fs, Fs, Fig), the picture
does not change much for different n values. On F3 and Fg,
the results are similar to Fig. 4, and on F}( the results are
similar to Fig. 5. Taking F} for example, Fig. 6 shows typical
results on the first group (F1, F2) as n increases. First, it can be
seen that the optimization process of ROMS-DE is less well
developed (or less well converged) with a larger n. Recall
that the population size is set to 5 X n x D which increases
with n. Thus, a natural explanation for this observation is
that with a larger population, an evolutionary algorithm just
needs more fitness evaluations to converge. For ROMS-TP, the
following trend can be observed. With an increasing n, the
optimization effect gradually shifts from the second step of
each iteration to the first. What follows is consistent with the
previous observation made on the comparison between Figs. 4
and 5. As the first step plays a more and more important role,
descent of the optimization curve becomes more gradual. And
without the remarkable decrease in the second step at the first
iteration, ROMS-DE catches up with ROMS-TP.

Scalability for f,.,, D = 2: Fig. 7 gives the results of
scalability test with respect to m. The objective values are the
final results obtained by the algorithms at a fitness evaluation
count of approximately le7. As can be seen that, ROMS-
TP has better scalability on all test functions expect Fig
where the opposite seems to hold somehow. Fig. 8 gives the
results of scalability test with respect to n. Overall, ROMS-DE
has better scalability on all test functions with the exception
of Fjp where, again, the opposite seems to hold. It is also
noticed that at the given fitness evaluation count, ROMS-TP
generally has obtained a final result no worse than that of
ROMS-DE for each m,n combination on all test functions
expect F1g where ROMS-DE has got the upper hand. The



objective value

ohjective value

objective value

ohjective value

3000 -300 3500
e ROMS-TP
4 am ROMS-DE 3000
| = a0 P 2500
= =
i = 2000
1 £ 308 2
3 S 1500 :
{ & 308 g %
1000 =
500 L SR g -310 500 A&:«:».
gl ) , . 312 L g | i ok . . )
10° 10* 10° 10° 107 10° 10t 10° 10° 10° 10t 10° 10° 107
fithess evaluation count fitness evaluation count fitness evaluation count
Figd. [1-12-2-2-faug Fig5. Fi0-12-2-2-favg Figb(a). F1-20-2-2-faug
400 - . .
e ROMS-TP
300 ROMS-DE
N o 200
= 3
2 $ 100¢
@ @
z z
g g 0
g g
-100
200
L
0 i i . -100 . . g 300 , . .
1* 10° 10° 10 10* 10° 1° 10’ 10 10° 10°
fitness evaluation count fithess evaluation count fitness evaluation count
Fig6(b). F1-20-4-2-faug Fig6(c). F1-20-6-2- faug Fig6(d). F1-20-8-2-faug
300 3000 2500
. e ROMSTP
ROMS-DE 2500 2000
2 2000 E
K T 1500
2 1500 2
B, B, 1000
€ 1000 2
500 500
-400 . . . . § g 0 : \ \
10 1° 10° 10 o 8 12 16 0 1 8 12 16 20
fithess evaluation count m m
Fig6(e). F1-20-10-2-faug Fig7(a). Fi-m-2-2-foug Fig7(b). F2-m-2-2-favg
10 X 107
X
10 T T T 8
......... ROMSTP S| ROMS-TP ]
8 — ROMS-DE — ROMS-DE
B “
3 E
Bt 185 1 2
@
@
4 i =
ar 1253 1 £
o
2 J
2t ol e E
IR, - 1 d
D 1 1 1 D
4 8 12 16 20 4 20
m m
. Fig7(e). F19-m-2-2-
Fig7(c). F3-m-2-2-faug Fig7(d). Fg-m-2-2-faug gi(e). Fio favg



objective value

ohjective value
] w = m [a7] ~ @

objective value

ohjective value

2500

2000

m
=]
[=]

x 107

[}
Jai)
[=1

w
o
[=]

[}
i)
(=]

N
Q
[=]

o
[=]

50

Fig8(d). F-20-n-2- favg

iy
iy,

10

10°

fitness evaluation count

Figl0. F10-12-2-30- faug

ROMS-TP
——ROMS-DE

Figl1(c). F3-m-2-30-faug

objective value

ohjective value

objective value

objective value

2500

2000

1500

1000

]
o
[=]

2 4 6 8 10
n
Fig8(b). Fa-20-n-2-faug
-305
310 1
315 1
-320 - 1
-325 L - ‘
4 B g 10
n

8
7
3
5
P e ROMS-TP ||
——— ROMS-DE

) i
i i
1 e, e g B e e n
0 x ' l

| . - 6 20

m
Figl1(a). F1-m-2-30-faug

x 10"

5

ooeee - ROMS-TP
—ROMS-DE

4
3 i
2 i
1 i
0 L " L
4 8 12 16 20
m

Figl1(d). Fg-m-2-30-fqvg

objective value

objective value

objective value

objective value

-ROMS-TP
—— ROMS-DE ||

Fig8(c).

F3-20-0-2- faug

0L L L

10* 10° 10° 107
fithess evaluation count
Fig9. F1-1 2—2—30—fa1,g

x10°

18 . . . .

P | e ROMS-TP

: — ROMS-DE

1.4 1
12 1
1 ]
0.8 1
06 1
0.4 - 1
0'24 8I 1|2 1|6 20
m
Figl1(b). F2-m-2-30- foug
200
~~~~~~~~~ ROMS-TP
150 | L———ROMS-DE

100

50

20

Figl1(e). F10-m-2-30-faug



......... ROMS-TP

w
n

N
m W
2

[N

2 E 2
3 3 z
> = > Bl
5 sl [ ROMSTP sy [ ROMGTP
E ——ROMSDE || £ ——RomsDE|| £ ——ROMS-DE ||
2 4 B 315
= = =
o o 1 =]
1
2
Em e - v US - - B rerrrtetaenaas 05
0 0 : 0 . :
2 4 6 8 10 2 4 6 8 10 2 4 6 B 10
n n
Figl2(a). F;-20-0-30-fqu, Figl2(b). F5-20-n-30-favg Fig12(c). F3-20-n-30-fqu
10
x 10
6 200
5 /Z‘F" 150
s s
ER = 100 1
sql [ ROMS-TP | | s | ggmgg’;
= —— ROMS-DE 2 50 —
g H
S 2t I R x
of =
1F
| R ol ; , , |
2 4 & 8 10

Fig12(d). F5-20-0-30-faug

results on Fjo are somehow abnormal when compared to the
results on other test functions. Since high multimodality is the
most distinct feature of F7g, it is suspected that the degree of
multimodality has an impact on the relative performance of
the two algorithms. Specifically, ROMS-DE seems to be more
suitable for handling highly multimodal functions.

Optimization dynamics for f,,;, D = 30: At a higher
dimension D = 30, when n is fixed, the big picture looks
similar with different m values and on different test functions.
Figs. 9 and 10 give the results corresponding respectively to
Figs. 4 and 5. Pay attention that, for the ROMS-TP curve in
the two figures, the fitness evaluation cost and objective value
decrease of the first step are so low compared to those of
the second step that the sample point for the second step is
visually undistinguishable from the sample point for the first
step in the next iteration; they just overlapped. Compared to
results in 2 dimensions, the difference is mainly seen on Fig.
Here, Iy does not distinguish itself from other test functions,
and the results are just like those on other functions without
any particularity. The success of the second step may due to
the increase in the population size, which according to the
parameter settings (see Table 3) is 5xD. When m is fixed,
the dynamics of ROMS-TP basically remains the same for
different n values while the optimization process of ROMS-
DE is becoming more and more less well developed with
increasing n due to an increasing population size (just like
the case in 2 dimensions).

Scalability for f,,,, D = 30: Fig. 11 gives the results

Figl2(e). F10-20-n-30-fqvg

of scalability test with respect to m in 30 dimensions, which
clearly show that ROMS-TP has better scalability. Fig. 12, on
the other hand, gives the results in terms of n, and no clear
scalability difference is observed. In 30 dimensions, ROMS-TP
has always got a better final result on all experiments including
the ones on [}, which is an exception in 2 dimensions.

Optimization dynamics for f,s;, D = 2: In the remainder
of this subsection, the results obtained with measure f,,; are
presented. The dynamics picture looks basically the same for
different m values and on different test functions. Figs. 13 and
14 show respectively the results corresponding to Figs. 4 and 5.
For ROMS-TP, contribution of the first step to objective value
decrease is limited compared to that of the second step on all
test functions. Fig. 15 shows the results with an increasing
n. The optimization process of ROMS-DE is becoming less
well developed while the curve of ROMS-TP is becoming
smoother. However, the performance difference of the two
algorithms seems to be enlarging. The two curves are more
deviated for larger n values.

Scalability for f, s, D = 2: Fig. 16 shows the results of
scalability test with respect to m. The curves are so close that
we are unable to draw a clear conclusion. Fig. 17 shows the
results with respect to n. Despite the curves are close, ROMS-
TP has better scalability.

Optimization dynamics for f,q, D = 30: As in 2
dimensions, the results look similar for different m values on
all test functions. Figs. 18 and 19 give the results correspond-
ing to Figs. 13 and 14 respectively. Again, for the ROMS-
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TP curve, the sample point for the second step is visually
undistinguishable from the sample point for the first step in
the next iteration.

Scalability for f, ., D = 30: Fig.20 gives the results of
scalability test with respect to m, which show that ROMS-TP
has better scalability on all test functions except Fjy where
the opposite seems to hold. Fig. 21 gives the results with
respect to n, which clearly suggest that ROMS-TP has better
scalability on all test functions including Fjo. With f,,5; in 30
dimensions, ROMS-DE has got a better final result than that
of ROMS-TP in some cases. The advantage of ROMS-TP is
somehow weakened.

VII. CONCLUSIONS

In this work, a new formulation for robust optimization is
proposed. The goal is to optimize for a variety of environ-
mental conditions which are modelled by a set of functions.
Following a traditional robust optimization formulation, a
single solution is sought to cope with all different conditions,
which characterizes an extremely high robustness requirement.
Since robustness and performance are generally two conflict-
ing goals, this traditional formulation may fail with way too
compromised performance in some applications. To address
this issue, we propose a generalized formulation, namely
robust optimization with multiple solutions, in which multiple
solutions, are sought to cope with the varied conditions. Each
solution serves some subset of the conditions and the whole
condition set is covered by the solution set. By tuning the
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desired number of solutions, the balance between robustness
and performance can be flexibly adjusted.

The formulation presents us a new kind of optimization
problem with new difficulty. To solve it, two fundamental
observations revealing insights into the problem are first made.
Observationl is about computing an optimal mapping from a
given solution set, while Observation2 is about computing an
optimal solution set from a given condition set partition. Based
on the observations, two general approaches are then proposed.
The first approach is by direct evolutionary optimization.
Taking advantage of the first observation, the original mixed-
integer optimization problem is reduced to a real-value one
which is much easier to deal with. With a unified view on
the two observations, an optimization loop is discovered. The
second approach is built on the basic idea that optimization can
be achieved by repeating this loop. Our proposed approaches
apply to the robustness measure of both average and the worst
performance.

With specific instantiations, denoted by ROMS-DE and
ROMS-TP respectively, of the two approaches, an empirical
study is performed. The experiments are done using various
objective functions from CEC-2005, with different problem
parameters (number of conditions and desired number of
solutions), and in different dimensions (2 and 30). To introduce
the notion of environmental parameters, the original objective
functions are parameterized with a shifting vector and an
orthogonal matrix, which are randomly generated for each
condition. According to the results, both algorithms have their



wins and losses. To sum up, ROMS-TP has a better overall
performance. As to future work, theoretical analysis of the
proposed approaches is encouraged. We are also eager to see
some real-world applications.
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