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Abstract—In this report, an adaptive dynamic programming
algorithm is developed to solve online the Nash equilibrium for
two-player zero-sum differential games with completely unknown
continuous-time systems. The developed scheme updates the value
function, control and disturbance policies at the same time.
It is shown that the algorithm is mathematically equivalent
to Newton’s method. To facilitate the implementation of the
algorithm, one critic network and two action networks are used to
approximate the value function, control and disturbance policies
respectively. The least squares method is used to estimate the
unknown parameters. The effectiveness of the developed scheme
is demonstrated in the simulation experiment by designing a
load-frequency controller for a power system.

Index Terms—Adaptive dynamic programming, approximate
dynamic programming, reinforcement learning

I. INTRODUCTION

DAPTIVE dynamic programming (ADP) [1]-[9] meth-

ods can solve optimal control problems forward in time
by making use of online measured data. These algorithms have
been successfully applied to many areas like residential energy
system control [10], engine control [11], and call admission
control [12], etc.

For continuous-time dynamical systems, Doya [13] pre-
sented a reinforcement learning (RL) framework without a
priori discretization of time, state and control. Vamvoudakis
and Lewis [14] proposed a synchronous policy iteration (PI)
algorithm for learning online the continuous-time optimal
control with known dynamics, where both action and critic
neural networks were simultaneously tuned. Zhang et al. [15]
extended the synchronous PI algorithm to the optimal tracking
problem for unknown nonlinear systems, and added a robust
term to compensate for the neural network approximation
errors. Bhasin et al. [16] presented an actor-critic-identifier
structure to implement the PI algorithm without the require-
ment of complete knowledge of the dynamics. Vrabie et al.
derived an integral RL algorithm to obtain direct adaptive
optimal control for partially unknown linear and nonlinear
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systems [17], [18]. Some researchers try to propose adaptive
optimal control algorithms for completely unknown systems
without identification. Mehta and Meyn [19] established con-
nections between Q-learning and nonlinear optimal control
of continuous-time models, and proposed continuous-time Q-
learning for completely unknown systems. Lee et al. [20] de-
rived an integral Q-learning for continuous-time linear systems
without the knowledge of the system dynamics. Jiang and
Jiang [21] presented a computational adaptive optimal control
algorithm for continuous-time linear systems with completely
unknown system dynamics.

Game theory [22] provides an ideal environment to study
multi-player optimal decision and control problems. Two-
player noncooperative zero-sum differential game [23] has
received much attention since it provides the solution of the
H, optimal control [24]. The Nash equilibrium solution is
usually obtained by means of offline iterative computation,
and requires the exact knowledge of the system dynamics.
For nonlinear continuous-time systems, Abu-Khalaf et al. [25],
[26] derived an H., suboptimal state feedback controller for
constrained input systems. Zhang et al. [27] used four action
networks and two critic networks to obtain the saddle point
solution of the game problems. Vamvoudakis and Lewis [28]
presented an online synchronous PI to solve the continuous-
time two-player zero-sum game with infinite horizon cost for
nonlinear systems with known dynamics. In [29], a neural-
network-based online simultaneous policy update algorithm
with only one iterative loop was proposed to solve the zero-
sum games for partial unknown systems.

For linear continuous-time systems, finding the Nash equi-
librium of the zero-sum game problem reduces to solving
the game algebraic Riccati equation (GARE). Vrabie and
Lewis [30] proposed an online data-based ADP algorithm
based on the idea of integral RL for two-player zero-sum
linear differential games without requiring the knowledge of
internal system dynamics. Wu and Luo [31] proposed an
online simultaneous policy update algorithm for H, state
feedback control to improve the efficiency by updating both
control and disturbance policies simultaneously. However, it is
difficult to obtain the knowledge of the system dynamics for
many practical problems.

To the best of our knowledge, there are still not model-
free ADP methods for zero-sum games with completely un-
known continuous-time systems. In this report, we develop
an online model-free ADP algorithm to learn the Nash equi-



librium solution for two-player zero-sum differential games
with completely unknown systems. Only one iterative loop
is involved to improve the efficiency of the learning process.
The developed scheme updates the value function, control and
disturbance policies at the same time. It is shown that the
algorithm is mathematically equivalent to Newton’s method.
To facilitate the implementation of the algorithm, one critic
network and two action networks are used to approximate the
value function, control and disturbance policies respectively.
The least squares method is used to estimate the unknown
parameters. The effectiveness of the developed scheme is
demonstrated in the simulation experiment by designing a
load-frequency controller for a power system.

The rest of this report is organized as follows. Section II
provides the formulation of a two-payer zero-sum differential
game. In Section III, we first develop a model-free ADP
algorithm for zero-sum games, then provide the convergence
analysis, and finally give the least squares method to estimate
the unknown parameters. Section IV presents a simulation
example in power system to demonstrate the effectiveness of
the developed algorithm and is followed by conclusion and
future work in Section V.

Notations: R™, R™ and R"*™ are the set of positive real
numbers, the n-dimensional Euclidean space and the set of all
real n x m matrices, respectively. ||-|| denotes the vector norm
or matrix norm in R™ or R™"*™_ [, denotes the n-dimensional
identity matrix. Denote Z, the set of nonnegative integers.
Use vec(X) for X € R™ ™ as a vectorization map from a
matrix into an mn-dimensional column vector which stacks
the column of X on top of one another. For X € R"*™ and
Y e R™*™ we let X ® Y be a Kronecker product of X and
Y. The superscript T is used for the transpose. V, f(z,y) £
Of(z,y)/0z denotes a gradient operator notation.

II. PROBLEM STATEMENT

Consider the following continuous-time linear dynamical
system described by

T = Az + Biu + Byw ()

where © € R” is the system state with the initial state x,
u € R™ is the control input, and w € R? is the external
disturbance input and w € Ls[0,00). A € R"*", By € R"*™,
and By € R™*Y are unknown system matrices.

Define the infinite horizon performance index as

[ee]
J(xo, u, w) = / (mTQas +u'Ru —~*w w)dr  (2)
0

o0
£ / r(x,u, w)dr
0

with @ = QT > 0, R = R" > 0, and a prescribed constant
v > v* > 0, where v* denotes the smallest v for which
the system (1) is stabilized. For feedback policy u(z) and
disturbance policy w(z), we define the value function of the
policies as

V(z,u,w) = / ("Qz 4+ u" Ru — v*w w)dr.  (3)
t

Then, we define the two-player zero-sum differential game as

V*(20) = minmax J(zg, u, w) 4)

u w

o0
= min max/ (2"Qz + u" Ru — v*w w)dr
0

where the control policy player u seeks to minimize the
performance index while the disturbance policy player w
desires to maximize it. The goal is to find the saddle point
(u*, w*) which satisfies the following inequalities

J(xo, u,w*) > J(zo,u", w") > J(xo, u", w) (5)

for any state feedback control policy u and disturbance policy
w.

Denote u = —Kx and w = Lx for the state feedback
control policy and the disturbance policy respectively. Then,
the value function (3) can be represented as V' (z;) = x] Py,
where the matrix P is determined by K and L. The saddle
point can be obtained by solving the following continuous-
time GARE [23]

ATP* + P*A+Q— P*B,R™'B] P* + 4 2P*By,B] P* = 0.

(6)
Defining P* as the unique positive definite solution of (6), the
saddle point of the zero-sum game is

u* = —-K*'zr=—-R Bl Pz (7)
w* = L*z =" 2BlP*z (8)

and the value function is
V*(x0) =z P*xg. 9)

Assume that the pair (A, Bp) is stabilizable and the pair
(A,Q'?) is observable, so that a stabilizing control policy
exists.

III. MAIN RESULTS

In this section, we first develop an online model-free ADP
algorithm for the zero-sum game with the completely unknown
linear continuous-time system, then provide the convergence
analysis, and finally present the online implementation using
the least squares method.

A. Online Model-free ADP for Zero-sum Games

In this subsection, we will develop an online model-free
ADP algorithm for the linear continuous-time zero-sum dif-
ferential game with completely unknown systems. First, we
assume an initial stabilizing control matrix Ky is known.
Define Vj(z) = 2" Pir, u;(z) = —K;x and w;(z) = Lz
as the value function, control policy and disturbance policy
respectively, for each iterative step ¢ > 0.

To relax the assumptions of exact knowledge on A, By
and Bs, we denote e; and ey to be the exploration signals
added to the control policy u; and disturbance policy w;
respectively. The exploration signals are assumed to be any
non-zero measurable signal which is bounded and exactly
known a priori. Then the original system (1) becomes

:r:Ax—i—Bl(ul—i—el)—&—Bg(wZ—i—eg) (10)



Algorithm 1 Online Model-free ADP for Zero-sum Games

Step 1. Give an initial stabilizing policy u; = —Kj;z and
wi; = Liz. Set i =1 and Py = 0.

Step 2. (Policy Evaluation and Policy Improvement)
For the system (10) with policies u; = —K;z and w; =
L;z, and exploration signals e; and es, solve the following
equation for P;, K;1 and L;;

t+T
foixt = LCI+TPi"Et+T + / r(x,u;, w;)dr (13)
t

t+T t+T
- 2/ xTKiT_HReldT — 272 / xTLZT+162dT.
t ¢

Step 3. If || P, — Pi—1|| < £ (£ is a prescribed small positive
real number), stop and output P;; else, set ¢ = ¢+ 1 and go
to Step 2.

The derivative of the value function with respect to time is
calculated as

V;(:I:) =—2'Qx — xTKiTRKix + VQxTLiTLix
+22 K] Rey + 2922 L] e

(1)

Integrating (11) from ¢ and t4-7" with any time interval 7' > 0,
we have

t+T
UULTPMHT — xIPixt = —/ r(z,u;,w;)dr  (12)
t

t+T t+T
+2 / 2 K], Reydr + 27* / aTL],  eqdr
t t

where the values of the state at time ¢ and ¢ + 7" are denoted
with z; and x,y 7. Therefore, we obtain the online model-free
ADP algorithm for zero-sum differential games.

Remark 1: The equation (13) plays an important role in
relaxing the assumption of the knowledge of system dynamics,
since A, By and Bs do not appear in (13) anymore. To run
this algorithm, it only requires online data measured along the
system trajectories. This method avoids the identification of
A, By and B; whose information is embedded in the online
measured data. In other words, the lack of knowledge about
the system dynamics does not have any impact on this method
to obtain the Nash equilibrium. Thus, this method will not be
affected by the errors between the identification model and
the real system, and it can respond fast to the change of the
system dynamics.

Remark 2: This algorithm is actually the PI method, but
the policy evaluation and policy improvement are performed
at the same time. Compared with the model-based method [28]
and partially model-free method [31], this algorithm is a fully
model-free method which does not require any knowledge of
the system dynamics. Different from the iterative method with
inner loop on disturbance policy and outer loop on control
policy [28], and the method with only one iterative loop by
updating control and disturbance policies simultaneously [31],
the developed method here updates the value function, control
and disturbance policies at the same time. Hence, this method
will have higher efficiency.

Remark 3: To guarantee persistence of excitation condition,
the state may need to be reset during the iterative process, but
it results in technical problems for stability analysis of the
closed-loop system. An alternative way is to add exploration
noises. However, the added exploration noises may make the
solution different from the exact one determined by the GARE.
Compared with these methods, we consider the effects of
exploration noises. Therefore, the solution obtained by our
method is exactly the same as the one determined by the
GARE.

B. Convergence Analysis

In this part, we will provide a convergence analysis of
the developed algorithm for two-player zero-sum differential
games. It can be shown that the developed model-free ADP
algorithm is equivalent to Newton’s method.

Theorem 1: For an initial stabilizing control policy u; =
— Kz, the sequences of {P;}3°,, {K;}2,, and {L;}2;
obtained by solving (13) converge to the optimal solution P*
of GARE, the saddle point K*, and L* respectively, as ¢ — oco.

Proof: For an initial stabilizing control policy w; =
— Kz, we can prove that the developed algorithm is equiva-
lent to the following Lyapunov equation

AP + P A = —M; (14)

where
A;j = A— BiK; + ByL; (15)
M; = Q+ K] RK; — +*L] L;. (16)

With the control policy u; = —K;x, the disturbance policy
w; = L;x, and the exploration signals e; and es, the closed-

loop system (1) becomes
i = A;x + Biei + Baes, a7

where A; = A — B1K; + BsL;. Considering the Lyapunov
function V;(x) = = Pz, its derivative can be calculated as

Vz(x) =3P +2 P = {L‘TA;FPZ'{L‘ + 2P Ax (18)
+ (Bieg + B262)TP7;J) + xTPi(Blel + Bses)
= 2" (Al P, +PiAi)x+2xTK;r+1Rel +272£UTLL_162.
Integrating (18) from ¢ and ¢ + T yields

t+T
Vi(zeyr) — Vi(zy) = / xT(AIPZ' + P A)xdr  (19)
¢

t+T t+T
- 2/ 'Kl Reydr + 2/ 2 L] epdr.
t t
From (13), we can have

t+T
Vilxiar) — Vi(zy) = —/ r(x, u;, w;)dr (20)
t

t+T t+T
+2 / 2K Reydr + 2 / 2 L] epdr.
t t
Therefore, considering (19) and (20), we can get

JUT(AiTPL- + P A)x = —r(x,us, w;) 21
= —2'(Q + K] RK; —*L{ L;)x



ie.,

AP + P A = —M; (22)

where

M; = Q+ K] RK; — +*L] L;. (23)

According to the result in [31], the sequence {P;}°;
generated by (14) is equivalent to Newton’s method and
converges to the optimal solution P* of GARE, as i — oo.
Furthermore, the sequences of {K;}5°, and {L;}°, converge
to the saddle point K* and L*, as ¢ — oc.

|

C. Online Implementation

In this part, we will present an online implementation of
the developed model-free ADP algorithm with least squares
method. Here parametric structures are used to approximate
the value function, control policy and disturbance policy.

Given a stabilizing control policy u; = —K;x, a pair of
matrices (P;, K1, Li1) with P; = P] > 0, can be uniquely
determined by (13). We define the following two operators:
P e RY™ o P e R3™(H) 5 ¢ R” — 7 € Rz™X(4D),
where

P = [plh 210127 ceey 2p1n7p22> 217237 ceey 2p(n71)napnn]T

(24)

T2, 22T (25)

_ 2 2
T =[x],2122,. .., T1%y, T3, ToX3, . .

Hence we can have

xtT+(k71)TPiiUt+(k—1)T — 2y e Piverr (26)

= (e (k—1)T — Tearr) P

where k € Z, and k > 1. Using Kronecker product ®, we
can obtain

'Kl Rey = (x®e1) (I, @ R)vee(Ki11) (27
2L 1e2 = (v ® e2) vee(Liy1). (28)

Using the expressions established above, (13) can be rewritten
to be a general compact form

P;
Ui | vee(Kiy1) | =0k, VieZ, (29)
vec(Liy1)
with
kT
O :/ r(z, u;, w;)dr (30)
t+(k—1)T

(z ® e))'dr (I, ® R),
(3D

t+kT
(0 :|:<xt+(k1)T —Zyipr),2 /
t4(k—1)T

t+kT T
2v2 / (z® 62)Td7]
t+(k—1)T

where the measurement time is from ¢ + (k — 1)T to ¢t + kT
Since (29) is only a 1-dimensional equation, the uniqueness
of the solution can not be guaranteed. We will use the least

squares method to solve this problem, where the parameter
vector is found in a least squares sense over a compact set 2.

For any positive integer N, denote ® = [¢)1, ..., ¥n]
and © = [f;, ..., On]T. Then we have the following N-
dimensional equation

P,
O | wvee(Kiiq)
vec(Liy1)

=0, VieZ,. (32)

If ®T has full column rank, the parameters can be solved by

P,
vec(Kiq1)
vec(Liy1)

= (¢3")"1®O. (33)

Therefore, we need to have the number of collected points [N
at least Ny, = rank(®), ie.,

n(n+1)
2

which will make (®®T)~! exist.

The least squares problem in (33) can be solved in real time
by collecting enough data points generated from the system
(10). The solution can be obtained using the batch least squares
algorithm, the recursive least squares algorithm, or the gradient
descent algorithm.

The sequence {P;}°, calculated by the least squares
method converges to the approximate solution of GARE. The
persistence of excitation condition is required to make the
algorithm converge. Several types of exploration signal have
been used, such as piecewise constant exploration signals
[20], sinusoidal signals with different frequencies [21], and
exponentially decreasing probing noise [28].

Nmin = + nm + ng, (34)

IV. SIMULATION STUDY

In this section, we will demonstrate the effectiveness of
the developed algorithm by designing an H,, robust load-
frequency controller for a power system.

Consider the following linear model of a power system that
was studied in [30]

i = Az + Byu + Bow (35)
—0.0665 8 0 0
B 0 ~3.663  3.663 0
| —6.86 0 13736 —13.736 | ¥

0.6 0 0 0

0 -8

0 0

Tlasse YT o |V
0 0

where the state vector is = = [Af AP, AX, AE|,
Af (Hz) is the incremental frequency deviation, AP,
(p.u.MW) is the incremental change in generator output,
AXg (pu.MW) is the incremental change in governor value
position, and A F is the incremental change in integral control.
We assume that the exact knowledge of the dynamics is com-
pletely unknown. The matrices Q and R in the performance
index are identity matrices of appropriate dimensions, and



v = 3.5. Using the system model (35), the optimal value
function of the zero-sum game is

0.8335 0.9649 0.1379 0.8005

pr_ 0.9649 1.4751 0.2358 0.8046 (36)
0.1379 0.2358 0.0696 0.0955
0.8005 0.8046 0.0955 2.6716

Now we will use the developed online model-free ADP
algorithm to solve this problem. The initial state is selected
as xo = [0.1 0.2 0.2 0.1]". The simulation is conducted using
data obtained along the system trajectory at every 0.01s. The
least squares problem is solved after 50 data samples are
acquired, and thus the parameters of the control policy is
updated every 0.5s. The parameters of the critic network, the
control action network and the disturbance action network are
all initialized to zero. The persistence of excitation condition
is ensured by adding a small probing noise to the control and
disturbance inputs.

Fig. 1 presents the evolution of the parameters of the
critic network during the learning process. It is clear that the
developed algorithm is convergent after 10 iterative steps. The
obtained approximate value function is given by the matrix

0.8335 0.9649 0.1379 0.8005

po_ | 09649 14752 0.2359 0.8047 37

10 0.1379 0.2359 0.0696 0.0956 |’
0.8005 0.8047 0.0956 2.6718

and ||Pg — P*|| = 2.9375 x 10~*. We can find that the
solution obtained by the online model-free ADP algorithm
is quite close to the exact one obtained by solving GARE.
Fig. 2 and Fig. 3 show the convergence process of the
parameters of the control and disturbance action networks.

The obtained H,, state feedback control policy is uj; =
—[1.8941, 3.2397, 0.9563, 1.3126]x.

The convergence of critic network

-2

0 1 2 3 4 5
Time (s)

Fig. 1. Convergence of the game value function matrix P;

V. CONCLUSION AND FUTURE WORK

In this research, we developed a novel adaptive dynamic
programming algorithm to learn online the Nash equilibrium
for two-player zero-sum differential games with completely

The convergence of action network

Time (s)

Fig. 2. Convergence of the control action network parameters K;

The convergence of disturbance network

Fig. 3. Convergence of the disturbance action network parameters L;

unknown continuous-time systems. We also proved the con-
vergence of this algorithm. One critic network and two action
networks were used to approximate the value function, control
and disturbance policies to implement the algorithm. And the
least squares method was adopted to estimate the unknown
parameters. We applied the developed scheme to design an
H . state feedback control for a power system. In the future,
we will extend the results to two-player zero-sum differential
games with completely unknown nonlinear continuous-time
dynamics.
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