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Abstract—The study of general anesthesia lacks a systems-
level mechanism to explain phenomenal properties such as loss
of consciousness and network disintegration in the brain. The
use of connectivity measures in the study of anesthesia inspires
an application of a statistical mechanical theory known as
percolation. In this report, we devise a simple, layered network
with a unique topology to process input signals, as well as
algorithms to compute the activity at all regions in the network.
With such a model, it may be possible to develop a more detailed
mechanistic theory of general anesthesia, as well as generate
hypothesis about neural function during anesthetic induction.

I. INTRODUCTION

A. Problem Description

While much is known about the cellular and molecular
targets of anesthesia, not much is known about the systems-
level mechanism of general anesthesia. The general anesthetic
proposal, for instance, is a GABA-A receptor agonist, which
excites GABA inhibitory interneurons. Such inhibition pro-
vides the neurological basis for considering the effect of gen-
eral anesthesia as a process of cutting information transmitting
connections between neural populations.

Loss of consciousness during anesthetic state transitions is,
therefore, likely an emergent phenomenon due to disruption
of functional communication between nodes of a large-scale
neural network. In anesthetic state transitions, neural network
properties are known to change as the brain loses conscious-
ness. Therefore, it would be valuable to devise a model which
degrades the connectivity of neural networks in silica as
anesthesia is applied. To do so may would be an advance
toward a mechanism for general anesthesia that relates the
graph properties of neural networks with the phenomenology
underlying loss of consciousness.

The aim of the work herein is to develop a model that
assesses the information flow through a neural network repre-
senting a thalamocortical sensory pathway as its connections
are being inhibited by general anesthesia. As a model of a
sensory pathway in the nervous system, the network should
be able to input an ascending thalamocortical sensory signal
and output a cortical signal. The signal should be represented
by neural activity as an agent transmitting between each node
of the network. Such a network is an abstract representation
of the graph structure of the thalamocortical network; each
node represents neural populations and each edge represents
connections between them. The network should possess the

divergent and layered graph properties that characterizes such
a system in neurobiology. At a critical threshold of connec-
tivity, the system should undergo a mechanistic switch from
conscious sensory transmission to unconsciousness.

Such a model enables investigation of system properties
near the critical state of the network, allows hypothesis testing
about the electrophysiological properties of such a perturbed
system, and accommodates hypothesis generation for in vivo
work in the future.

B. Related Work

It is well established that connectivity is degraded in a
neural system during the transition between consciousness
and unconsciousness, in anesthesia. A comparison of elec-
troencephalography (EEG) responses to transcranial magnetic
stimulation before and after anesthetic induction revealed that
current propagation across the cortex is more local under
anesthesia. [1] Spectral analysis of EEG during loss of con-
sciousness also reveals network connectivity changes between
signals measured at various cortical nodes. [2] [3] Lastly,
functional magnetic resonance imaging has characterized con-
nective differences between cortical and subcortical activity
during conscious and unconscious states. [4]

This body of work motivates the network level model-
ing of general anesthesia. Various models have already been
proposed. Models have been created to recreate many of the
characteristic electroencephalographic features of anesthesia.
[5] [6] [7] [8] A cellular automaton model has been proposed
to abstract cortical EEG during anesthesia. [9]

However, most of these models are primarily concerned
with reproduction of the electrophysiological features of cor-
tical systems undergoing anesthetic induction with rigorous
biological constraints and specifications. None of these models
employ an information theoretic or signal processing approach
to assessing sensory propagation through a thalamocortical
network. Instead, they are merely a set of possible realities for
large-scale inhibition during general anesthesia. As a result,
it is difficult to relate such models to claims about the phe-
nomenological loss of consciousness as a matter of information
flow that is lost during propagation through a neural system.

II. APPROACH

To develop a mechanism to account for the loss of informa-
tion flow through a neural system during general anesthesia,



we look to percolation theory as a process to simulate the
effect of a general anesthetic drug. Such inhibition provides
the neurological basis for considering the effect of general
anesthesia as a process of cutting connections of information
transmission between cortical nodes.

Percolation defines a mathematical phenomenon by which
a cluster, or subset of connected nodes, in a graph is connected
if there exists an open path between its nodes. The probability
that a path is open between two adjacent nodes is called
the edge probability. If an open path exists between two
noes, percolation is said to occur between the nodes that
the edge joins. The probability that percolation occurs, or
the percolation probability, can be considered dependent of
the edge probability. The percolation probability can be seen
to increase precipitously following a corresponding increase
in edge probability past a critical threshold, or pc. Other
parameters of such a network may be investigated as well, such
as the size of the giant cluster, which is the largest subset of
nodes, each of which is connected by open edges to any other
node in the cluster. [10]

Percolation is particularly useful for assessing the loss of
information transmission during anesthetic states. Information
transmission is known to occur as propagation of signals
through a neural network. It is clear that propagation through
such a neural network (as in visual pathways, for example)
is disrupted during loss of consciousness. Because percolation
describes the behavior of a graph that varies in connectivity,
we may model transmitted information as an agent that travels,
or percolates, along the open edges through a neural network.

Percolation is well defined for any network or lattice.
Critical probabilities have been computed in mathematics for
various common lattices. In nature, however, network topolo-
gies do not occur in well-ordered lattices, but occur with
some randomness in their structures. One of the unknowns
in implementing such a theory is the network topology that is
able to abstract the connective structure of the thalamocortical
sensory pathways that support conscious sensation. Then,
being able to simulate information transmission across this
network can be a great tool for computational scientists seeking
a graph-theoretical approach to studying the behavior of such
networks during anesthetic state transitions.

Percolation theory is classically defined where nodes and
edges possess binary states of open or closed, and graph
properties are analyzed as edge probability is lowered from
1 to 0. Because a model of information transmission hopes to
simulate the transmission of time series of neural activity, it
is advantageous to have the nodes of our network to possess
activity values, not just binary states, and to model how the
network handles the activity at output, not to model network
properties solely through, for example, Monte Carlo sampling.
The agent percolating through the network, therefore, are
activity values, integrated at each node from the activities from
the ”presynaptic” nodes from which activity is passed.

This theory provides novel measures and algorithms for
assessing the behavior of a neural network at varying degrees
of connectivity, such as size of the largest cluster in a graph,
or the fit between a plot of transmission probabilities versus
the classic anesthetic does response curve. [11] Connectivity of
networks matters especially to anesthesiology, where the preci-

sion of neural network analyses vary inversely with the scale at
which they can be conducted. A statistical mechanical theory
such as percolation may aid in the description of a systems-
level mechanism of general anesthesia. [12] Percolation has
already been posited as a measure of connectivity in neural
networks. [13] Percolation has been investigated previously in
living neural networks. [14]

A. Objectives

We seek a computational method which implements the
following characteristics to modeling transmission of informa-
tion coded neural activity through a thalamocortical network:
(i) defines an network with an input layer and an output layer
through which a time series is percolated as information flow;
(ii) proposes a topology for such a network which abstracts
the biological principles of neural network topology; (iii) cuts
the edges of the network randomly as a function of the edge
probability of the system, adhering to a set of functions for
random sampling of edge probability values; (iv) defines an
equation to calculate the activity at a node as an integrated
value of presynaptic activities; (v) provides analytical tools to
compare the inputs and outputs of a network to assess the
integrity of information flow.

B. Theory

In our percolation model, the percolation of a signal
through the graph begins at the input node, whose activity
is set to a predefined input time series. At each time step, the
activity of every other node in the network is computed as a
weighted average of activity values at presynaptic nodes. The
weight of each presynaptic activity value is determined by the
magnitude of the edge weight that has been sampled from the
edge probability. The computation is described by

Ak =

∑n
j Aj ∗ ejk∑n
j ejk

(1)

for n presynaptic nodes j, the activities of which are weighted
by their edges jk.

The weights of the edges are distributed between [0, 1] and
define how much of a presynaptic signal is weighted into the
activity of the postsynaptic terminal. A high weight, then, is
indicative of an open edge across which signals can percolate,
and a low weight of a closed edge. Weight values are generated
using a transformation with the normal cumulative distribution
function with a standard deviation σ centered at 1−pe, where
pe is the edge probability of the system. By initially assigning
pseudorandom numbers uniformly distributed between [0, 1] to
each edge, a transformation with such a cumulative distribution
function allows each edge to be approximately open or closed
with a probability equal to pe. This method can be represented
by

ei = Φ1−pe,σ2(U [0, 1]) (2)

where Φ is the normal cumulative distribution function with
standard deviation σ, pe is the edge probability of the system,
and each edge i is given a uniformly distributed random num-
ber from U [0, 1]. For n edges in the network, approximately
n∗p3 edges have values close to 1, representing of open edges.
At pe = 1, nearly all of the edges have open weights close to
1; at pe = 0, nearly all of the edges have weights close to 0.
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Fig. 1. Diagram of a two layer network.

This method allows an efficient method of randomly sam-
pling edge weights that has an approximate openness with a
certain probability. Sampled using this method at pe = 1, the
network is almost completely connected. As pe is lowered from
1 to 0, edges randomly start to close, or be cut, in the network.
Such cutting is an abstraction of the effect of anesthetics on
neural transmission, which with a certain property can be
inhibited from firing.

C. Model Topology

We propose a graph embodying the thalamocortical loop,
composed of nodes and edges that each have probabilities of
being open or closed. Since the notion of effective connectivity
makes no claims about the structural connections between
brain regions in the form of axons and synapses, our model
assumes that neural activity is depressed or excited during var-
ious brain states, including anesthetic states, without structural
changes. The critical probability p depends on the underlying
structure of the graph. Therefore, selecting the network topol-
ogy with which to model the cerebral cortex is not a trivial
question, both for neurobiological and computational reasons.

Our topology must fit two primary specifications. First, it
must involve layers of connected graphs, in order to model
the laminar hierarchical nature of thalamocortical information
processing. [15] In the brain, information between the sensory
layer and the cortical layer must pass through a set of layer
connected in between, with some amount of processing occur-
ring at each layer as a matter of distributed processing. Second,
the topology must exhibit some degree of divergent behavior as
the signal proceeds from layer to layer. This is made to reflect
the high degree of divergence in sensory pathways, where
the number of neurons at each layer projects to an increased
number of neurons at the following layer. For example, it is
well established that there are more neurons at the layer of
the visual cortex than in the thalamus. The size of processing
layers in a neural system increases as well.

We propose a topology of layered small world networks,
connected to each other in a tree-like fashion. (Figure 1.)
Reductively, our model topology looks like an inverted tree in
which every vertex has k children. The connections between
the parents and children model ascending interlaminar thalam-
ocortical projections in a sensory network. Such a tree defines

(a) pe = 1

(b) pe = 0.5

(c) pe = 0

Fig. 2. Cutting of edges

layers of nodes which can be described by their distance away
from the initial or input node at which inputs begin their
ascent through the network. Among the nodes of a given
layer, we add intralaminar edges between a random set of
nodes following the Watts-Strogatz algorithm of generating
small-world random graphs. Intralaminar neuronal networks
have been claimed to exhibit the properties of small-world
graphs, and the connectivity of small world networks have
been attributed to conscious level during anesthesia. [16] [17]
Such a network which we propose is designed to approximate
the the general structure of a thalamocortical network.

As connections are randomly cut from the network, the
percolation probability of a signal from the input node to the
output layer decreases. Figure 2 shows what network connec-
tivity looks like as it undergoes random cutting. However, the



decrease should be associated with a range of edge proba-
bility probability values where random cutting is sufficient
to block percolation. One could imagine that cutting just a
few connections do not have a large effect on the percolation
probability across the entire system, just as allowing only a
few connections to exist would not make it likely for signals
to percolate at all.

D. Simulation

The steps of simulating activity through such a model are
as follows. Broadly, simulation the percolation of a signal
through our network requires initializing an unweighted graph
of the desired topology, assigning random weights to each
edge by the aforementioned sampling method, assigning an
input activity, calculating the activity of all other nodes, and
retrieving the output signal.

1) Generate adjacency matrix M defining the network
with degree d and layer n.

2) Assign random weights E to each edge given an edge
probability pe, as in equation 2.

3) Calculate the activity at each node i over t time
steps, with an input activity time series defined as
the activity of the input layer, as in equation 1.

4) Retrieve output signal as a mean of activity time
series of nodes in the final layer.

Generating the adjacency matrix of the network matching
the specification required involves assigning d edges to the l
nodes on each non-final layer, and then assigning intralaminar
edges between the d∗ l nodes created. The pseudocode for this
algorithm is as follows.

1) For each layer in the network:
a For each node j in the layer:
i Add create d new nodes and add k edges from j to

each new node k.
2) Arrange nodes j into a ring lattice.
3) For each edge in the layer:
a Rewire to a random node in the layer with some

probability.

Assigning random weights to each edge can be done with
the following pseudocode.

1) R ← matrix with size(M) of uniformly distributed
pseudorandom numbers between [0, 1].

2) E ← R ·M .
3) For every non-zero number ejk in E:
a ejk ← Φpe(ejk)

Percolating the signal through each node of the network
can be done with the following pseudocode.

1) For each time step t:
a For each non-input node k in the network:
i Compute Ak with equation 1.

In our work, the output signal is defined as the mean
signal of all nodes at the output layer. A signal percolates
to the output layer if it plays any significant part in the
computation of signals at the output layer, that is, if there are
paths composed of edges with sufficient weight from input the
output.

Fig. 3. Percolation probability versus edge probability as an abstraction of
the anesthetic dose response curve.

III. RESULTS

One of the ways to assess the suitability of a a percolation
model to a theory of general anesthesia is to reproduce a
clinical feature of general anesthesia. Namely, the sigmoidal
nature of the anesthetic dose response curve is important
for our model because percolation theory deems that the
percolation probability shares such a sigmoidal behavior. Fig-
ure 3 displays a plot of percolation probability versus edge
probability using Monte Carlo methods on a network with
three layers. In this data, however, inputs passed through the
network are binary states, not activity time series. Nevertheless,
the curve here presents the first data for the suitability of
such a network toward modeling percolation, without drawing
specific relations between the inhibition of edge probability
and anesthetic inhibition.

It is possible to examine the behavior of this network by
passing in some simple inputs. In Figure 4, Simple tonic,
stepping, sinusoidal, and random inputs are passed into the
network and examined as edge probability is lowered from
pe = 1 to pe = 0.

Several characteristics are of interest. First, signals reach
the output layer with some amount of lag, as it takes multiple
time steps for activity to traverse each set of edges in between
the layers. Second, when pe is lowered, the amplitude of the
signal decreases, partly because the input signal percolates to
a smaller proportion of the output layer nodes. Third, there
may be spectral shifts seen when pe is lowered. Observe that
peaks are lost in the network output from the random input,
which may result in frequency shifts for longer outputs. This
is also observed in Figure 5, where new edge probabilities are
given every 10 time steps. After some of these ”resampling”
events, activity does not change until the system resamples
again, causing the oscillatory activity to lose peaks where they
were in the input.

Note that at pe = 0, some of the output activities simulated
are not strictly constant at 0. Due to the sampling method
described, a small subset of edges are still on, all with
small weights, even when pe = 0. This is because a normal
cumulative distribution function centered at 1 − pe still has
a some area underneath its curve when pe = 0. Signals that
percolate along these edges may influence the output activity,



(a) Tonic input.

(b) Stepping input between 1 and −1.

(c) Sinusoidal input.

(d) Random input.

Fig. 4. Example output activity with simple inputs.

albeit slightly.

Fig. 5. Effect of resampling edges.

IV. DISCUSSION

In this model, we propose a method to percolate an activity
time series through a network in an effort to model inhibition
in a neural system. In devising such a method as well as imple-
menting the network through which to percolate such an input,
we have developed hypotheses with which to investigate the
phenomena surrounding loss of consciousness during general
anesthesia as well as its systems-level mechanism.

This model is unique in the study of general anesthesia.
Whereas previous models have simulated models with indi-
vidual neurons possessing cellular or electrophysiological dy-
namics, this model employs abstract representations of whole
neuronal populations. As such, we investigate the inhibition
of a network and its handling of simple inputs on the basis of
first principles.

It is evident from this work that the network handles each
input differently based on its connectivity and may perturb
the original signal in the spectral field. Such a finding is
crucial, as it supports the motivation to investigate spectral
shifts in the output signal based on the level of inhibition of
the system. Spectral shifts are crucial to our understanding of
the electroencephalography of anesthetic induction. Therefore,
it may be valuable to perform spectral analysis on the output
signals generated from a constant input signal, in an effort to
reproduce some of the characteristic frequency shifts seen in
general anesthesia.

For such analysis, it is reasonable to propose a class of
inputs that produces the desired EEG signatures seen during of
anesthetic induction, of which includes spectral and amplitude
shifts. [18] The search for such an input or a set of possi-
ble inputs enables some degree of parameter searching that
informs a reasonable hypothesis about the nature of ascending
thalamocortical activity in our model. Sinusoidal of various
frequencies as well as those mixed with random noise are
among the inputs that may be considered.

There are a variety of other parameters that may be
implemented into such a model. One such parameter involves
the rate of edge weight resampling, as the weight of individual
edges may change over the course of a simulation, sampled
from the same distribution as in the beginning. Another such
parameter may implementing scaling factors various edges
relative to others in an effort to provide stronger ascending
than descending transmission, or stronger feedforward than



feedback transmission. Such an implementation requires an
asymmetrical system, which may aid in analyzing region-
specific electrophysiological effects produced by such a sys-
tem. Lastly, another parameter that may be investigated is the
length previous activity from presynaptic nodes rather than
a single time step in an effort to build some memory into
the computation of activity at each node. These parameters
may prove useful to generating hypotheses about how a
neural system handles sensory information during anesthetic
inhibition.

One of the main contribution of this research is the progress
made toward a systems-level model of anesthetic inhibition
that produces a critical threshold of conscious information
transmission. As such, we have proposed the notion of the crit-
ical probability pc, borrowed from percolation theory, which
describes a narrow range of probabilities across which the
content of a signal is lost precipitously when passed through
an inhibited network. This is a theoretical formulation of the
critical dosage necessary for loss of consciousness during gen-
eral anesthesia, and allows us to make theoretical predictions
about how the system handles informational inputs at various
levels of inhibition using various parameters.

There are a variety of future directions for a percolation
model of general anesthesia. First, this model is amenable to
large-scale simulation with greater specificity. Second, param-
eter tuning might enable to generate specific hypotheses about
the nature of a thalamocortical network that matches with
clinical data from anesthesiology. Third, there are ideas to be
gleaned in neural computing. While our model is simplistic and
largely theoretical, there are a variety of networks that perform
computational intelligence on inputs. For example, an analysis
of random cutting in multi-layer perceptrons may provide some
insights about the necessary connectivity of a system or a
critical level of inhibition necessary for the network to lose
certain intelligent capacities. Fourth, we propose that there
exists a class of inputs which are likely to produce frequency
shift and amplitude increasing behavior as pe is cut. Because
such behavior is characteristic of EEG shifts as anesthetic
induction takes place, we may be able to validate this model
further by finding such an input.

In summary, we have developed a series of algorithms
and theory for the simulation of input activity signals in an
inhibited neural system using percolation theory. This work is
the starting point toward a systems-level mechanism of general
anesthesia, validated by clinical EEG.
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